| A. | 相离 | B. | 相切 | C. | 相交 | D. | 内含 |
分析 把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径R与r,利用两点间的距离公式求出两圆心的距离d,与半径和与差的关系判断即可..
解答 解:由圆C1:x2+y2-2x-3=0,化为(x-1)2+y2=4,
圆C2:x2+y2-4x+2y+4=0,化为(x-2)2+(y+1)2=1,
得到圆心C1(1,0),圆心C2(2,-1),且R=2,r=1,
∴两圆心间的距离d=$\sqrt{1+1}$=$\sqrt{2}$,∵2-1$<\sqrt{2}<3$,
∴圆C1和圆C2的位置关系是相交.
故选:C.
点评 此题考查了圆与圆的位置关系及其判定,以及两点间的距离公式.圆与圆位置关系的判定方法为:0≤d<R-r,两圆内含;d=R-r,两圆内切;R-r<d<R+r时,两圆相交;d=R+r时,两圆外切;d>R+r时,两圆相离(d为两圆心间的距离,R和r分别为两圆的半径).
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 次数(x) | 30 | 33 | 35 | 37 | 39 | 44 | 46 | 50 |
| 成绩(y) | 30 | 34 | 37 | 39 | 42 | 46 | 48 | 51 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(cosα)≥f(cosβ) | B. | f(sinα)≤f(sinβ) | C. | f(sinα)≥f(cosβ) | D. | f(sinα)≤f(cosβ) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com