精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对应边分别为a,b,c,已知a=csinB+bcosC.
(1)求A+C的值;
(2)若b=
2
,求△ABC面积的最大值.
考点:正弦定理
专题:解三角形
分析:(1)已知等式利用正弦定理化简,再利用诱导公式及两角和与差的正弦函数公式化简,求出tanB的值,确定出B的度数,即可求出A+C的度数;
(2)利用余弦定理列出关系式,把b,cosB的值代入并利用基本不等式求出ac的最大值,即可确定出三角形面积的最大值.
解答: 解:(1)由正弦定理得到:sinA=sinCsinB+sinBcosC,
∵在△ABC中,sinA=sin[π-(B+C)]=sin(B+C),
∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,
∴cosBsinC=sinCsinB,
∵C∈(0,π),sinC≠0,
∴cosB=sinB,即tanB=1,
∵B∈(0,π),
∴B=
π
4
,即A+C=
4

(2)由余弦定理得到:b2=a2+c2-2accosB,即2=a2+c2-
2
ac,
∴2+
2
ac=a2+c2≥2ac,即ac≤
2
2-
2
=2+
2

当且仅当a=c,即a=c=
2+
2
时取“=”,
∵S△ABC=
1
2
acsinB=
2
4
ac,
∴△ABC面积的最大值为
1+
2
2
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F1、F2分别为椭圆C的两个焦点,点B为其短轴的一个端点,若△BF1F2为等边三角形,则该椭圆的离心率为(  )
A、2
B、
3
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,设三边AB,BC,CA的中点分别为E,F,D,则
EC
+
FA
=(  )
A、
BD
B、
1
2
BD
C、
AC
D、
1
2
AC

查看答案和解析>>

科目:高中数学 来源: 题型:

2
21
12
+3
31
-2-3
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)lnx,a∈R.
(Ⅰ)若a=0,对于任意的x∈(0,1),求证:-
1
e
≤f(x)<0;
(Ⅱ)若函数f(x)在其定义域内不是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥底面是边长为2的正方形,侧棱长均为2,则侧面与底面所成二面角的余弦值为(  )
A、
3
2
B、
3
6
C、
3
3
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)为二次函数,若y=f(x)在x=2处取得最小值-4,且y=f(x)的图象经过原点,则函数y=f(log
1
2
x)
在区间[
1
8
,2]
上的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-x2+4x,x≤4
log2x,x>4
,若函数f(x)在(a,a+1)递增,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1,x<0
2x,x>0
,那么f(3)=
 

查看答案和解析>>

同步练习册答案