精英家教网 > 高中数学 > 题目详情
精英家教网在直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上.
(Ⅰ)求证:BC⊥A1B;
(Ⅱ)若AD=
3
,AB=BC=2,P为AC的中点,求三棱锥P-A1BC的体积.
分析:(Ⅰ)欲证BC⊥A1B,可寻找线面垂直,而A1A⊥BC,AD⊥BC.又AA1?平面A1AB,AD?平面A1AB,A1A∩AD=A,根据线面垂直的判定定理可知BC⊥平面A1AB,问题得证;
(Ⅱ)根据直三棱柱的性质可知A1A⊥面BPC,求三棱锥P-A1BC的体积可转化成求三棱锥A1-PBC的体积,先求出三角形PBC的面积,再根据体积公式解之即可.
解答:解:(Ⅰ)∵三棱柱ABC-A1B1C1为直三棱柱,
∴A1A⊥平面ABC,又BC?平面ABC,
∴A1A⊥BC (2分)
∵AD⊥平面A1BC,且BC?平面A1BC,
∴AD⊥BC.又AA1?平面A1AB,
AD?平面A1AB,A1A∩AD=A,
∴BC⊥平面A1AB,(5分)
又A1B?平面A1BC,
∴BC⊥A1B;(6分)
(Ⅱ)在直三棱柱ABC-A1B1C1中,A1A⊥AB.
∵AD⊥平面A1BC,其垂足D落在直线A1B上,
∴AD⊥A1B.
在Rt∠△ABD中,AD=
3
,AB=BC=2,
sin∠ABD=
AD
AB
=
3
2
,∠ABD=60°,
在Rt∠△ABA1中,AA1=AB•tan600=2
3
.(8分)
由(Ⅰ)知BC⊥平面A1AB,AB?平面A1AB,
从而BC⊥AB,S△ABC•=
1
2
AB•BC=
1
2
×2×2=2

∵P为AC的中点,S△BCP=
1
2
S△ABC=1
(10分)
VP-A1BC=VA1-BCP=
1
3
S△BCPA1A=
1
3
×1×2
3
=
2
3
3
.(12分)
点评:本题主要考查了直线与平面垂直的性质,以及棱柱、棱锥、棱台的体积,考查空间想象能力、运算能力和推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案