精英家教网 > 高中数学 > 题目详情
15.已知非零向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,且BC⊥OA,C为垂足,若$\overrightarrow{OC}$=λ$\overrightarrow{a}$(λ≠0),则实数λ等于(  )
A.$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}{|}^{2}}$B.$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$C.$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}{|}^{2}}$D.$\frac{|\overrightarrow{a}||\overrightarrow{b}|}{\overrightarrow{a}•\overrightarrow{b}}$

分析 由BC⊥OA便得到$\overrightarrow{BC}⊥\overrightarrow{OA}$,从而得到$\overrightarrow{BC}•\overrightarrow{OA}$=0,然后把$\overrightarrow{BC}=\overrightarrow{OC}-\overrightarrow{OB}=λ\overrightarrow{a}-\overrightarrow{b}$,$\overrightarrow{OA}=\overrightarrow{a}$带入进行数量积运算,从而可解出λ,从而找到正确选项.

解答 解:∵BC⊥OA;
∴$\overrightarrow{BC}•\overrightarrow{OA}=(\overrightarrow{OC}-\overrightarrow{OB})•\overrightarrow{OA}$=$(λ\overrightarrow{a}-\overrightarrow{b})•\overrightarrow{a}=0$;
∴$λ{\overrightarrow{a}}^{2}=\overrightarrow{a}•\overrightarrow{b}$;
∴$λ=\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}{|}^{2}}$.
故选A.

点评 考查两向量垂直的充要条件,数量积的运算,以及向量减法的几何意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.抛物线x2=8y的焦点到准线的距离是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ae2|x-b|(a>0,b∈R).
(1)当a=1时,对任意的x∈R,f(x)≥x,求实数b的取值范围;
(2)设在任何长为1的区间上总有两个数x1,x2满足|f(x2)-f(x1)|≥e-1,证明:a的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线|x|=|y|与直线x=3围成一个三角形区域,表示该区域的不等式组是(  )
A.$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤0}\\{x≤3}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≤0}\\{x≤3}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2-cosx,若当-π<x<π时,f(x1)<f(x2)恒成立,则下列结论一定成立的是(  )
A.x1>x2B.x1<x2C.|x1|<|x2|D.|x1|>|x2|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-8x+6lnx.
(Ⅰ)如果f(x)在区间(m,m+$\frac{1}{2}$)上单调函数,求实数m的取值范围;
(Ⅱ)若对任意k∈[-1,1],函数y=kx-a(这里a<3),其中0<x≤6的图象总在函数f(x)的图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列程序图中,输出的B是(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.0D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示的程序框图的运行结果为S=35,那么判断框中应填入的关于k的条件是(  )
A.k>6B.k≥6C.k≥7D.k>7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ln(x-1)-$\frac{ax}{x-1}$.
(1)讨论函数f(x)的单调性;
(2)若a∈[-e,-1],求f(x)的最小值的取值范围;
(3)设数列{an}是等差数列,且a1=-e,a2n=-1,证明:ln(a1a2a3…a2n)≤n(e+1)

查看答案和解析>>

同步练习册答案