己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,斜率为1的直线与椭圆C交于不同两点M,N.
(1)求椭圆C的方程;
(2)设直线过点F(1,0),求线段的长;
(3)若直线过点(m,0),且以为直径的圆恰过原点,求直线的方程.
(1)椭圆C的方程;(2)线段的长为;(3)直线的方程为 .
解析试题分析:(1)根据椭圆的右焦点为F(1,0),点A(2,0)在椭圆C上,代入即可求得椭圆C的方程;(2)先用点斜式写出直线方程,再和椭圆方程联立,用弦长公式即可求出线段的长为;(3)设直线的方程为,直线与椭圆的两个交点设为,,把直线方程与椭圆方程联立,表示出,而以线段为直径的圆恰好过原点,即;联立即可求出直线的方程为 .
试题解析:(1)由题意:,,,
所求椭圆方程为. 4分
(2)由题意,直线的方程为:.
由得,
所以. 6分
(3)设直线的方程为,
由消去y整理得.
因为直线l与椭圆C交于不同两点M、N,
所以
解得:
设,,
则,,
所以,
因为以线段为直径的圆恰好过原点,所以,
所以,即
解得,.
所求直线的方程为 10分
考点:直线与圆锥曲线综合问题、方程思想的应用.
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,经过点(0,)且斜率为k的直线l与椭圆+y2=1有两个不同的交点P和Q.
(1)求k的取值范围;
(2)设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量+与共线?如果存在,求k的值;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知椭圆C:+y2=1,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若=m+n,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两上动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆M:=1(a>)的右焦点为F1,直线l:x=与x轴交于点A,若1=2 (其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在坐标原点,焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(1)求椭圆方程;
(2)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(3)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,且经过点. 过它的两个焦点,分别作直线与,交椭圆于A、B两点,交椭圆于C、D两点,且.
(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△的两个顶点的坐标分别是,,且所在直线的斜率之积等于.
(1)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(2)当时,过点的直线交曲线于两点,设点关于轴的对称点为(不重合), 试问:直线与轴的交点是否是定点?若是,求出定点,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(1)已知点和,过点的直线与过点的直线相交于点,设直线的斜率为,直线的斜率为,如果,求点的轨迹;
(2)用正弦定理证明三角形外角平分线定理:如果在中,的外角平分线与边的延长线相交于点,则.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com