精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|-1≤x≤a},B={y|y=2x+3,x∈A},C={y|y=-x+1,x∈A},C?B,则实数a的取值范围是$-\frac{1}{2}≤a≤0$.

分析 先化简集合B,C,再利用C?B,求出实数a的取值范围.

解答 解:∵A={x|-1≤x≤a},
∴B={y|y=2x+3,x∈A}=[1,2a+3],C={y|y=-x+1,x∈A}=[-a+1,2],
∵C?B,
∴$\left\{\begin{array}{l}{-a+1≥1}\\{2a+3≥2}\end{array}\right.$,
∴-$\frac{1}{2}$≤a≤0.
故答案为:-$\frac{1}{2}$≤a≤0.

点评 本题考查的是集合的包含关系,函数的值域,不等式恒成立,考查学生的计算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(2x-y,x+2y),则元素(1,-2)在f的作用下的原像为(  )
A.(4,-3)B.(-$\frac{2}{5}$,-$\frac{8}{5}$)C.(-$\frac{2}{5}$,$\frac{1}{5}$)D.(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知单调递增数列{an}的前n项和为Sn,满足Sn=$\frac{1}{2}$(an2+n).
(1)求数列{an}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{\frac{1}{{{a}_{n+1}}^{2}-1},n为奇数}\\{3×{2}^{{a}_{n+1}}+1,n为偶数}\end{array}\right.$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算下列式子的值:
(1)${(\frac{1}{3})^{-1}}-2×{(\frac{9}{4})^{\frac{1}{2}}}+[{(0.5)^{-2}}-2]×{(\frac{27}{8})^{\frac{2}{3}}}+{(π-1)^0}$
(2)log916•lg3+lg25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|$\sqrt{x-2}$=0},B={x|x2+2(a+1)x+(a2-5)=0},
(Ⅰ)若A∩B={2},求实数a的值;
(Ⅱ)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:2tx+(1-t2)y-4t-4=0,若对于任意t∈R,直线l与一定圆相切,则该定圆的面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=|2x-4|,g(x)=|x+3|.
(1)解不等式f(x)+g(x)>7;
(2)令h(x)=f(x)+2g(x),求h(x)的最小值,并求出当h(x)取的最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求数列1+$\frac{1}{2}$,2+$\frac{1}{4}$,3+$\frac{1}{8}$,…,n+$\frac{1}{{2}^{n}}$…的前20项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设关于x的不等式:$\frac{x+1}{k}$≥1+$\frac{2x-4}{{k}^{2}}$的解集为A,且2∈A.
(1)求实数k的取值范围;
(2)求集合A.

查看答案和解析>>

同步练习册答案