分析 (Ⅰ)推导出CC1⊥BC,BC⊥AC,从而BC⊥平面ACC1A1,由此能证明BC⊥AM.
(Ⅱ)以C为原点,CA,CB,CC1分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出二面角A-MB1-C的大小.
解答
证明:(Ⅰ)∵三棱柱ABC-A1B1C1中,CC1⊥底面ABC,BC?平面ABC,
∴CC1⊥BC,
∵$AC=BC=2,AB=2\sqrt{2}$,
∴AB2=AC2+BC2,
∴BC⊥AC,
∵AC∩CC1=C,
∴BC⊥平面ACC1A1,
∵AM?平面ACC1A1,
∴BC⊥AM.
解:(Ⅱ)以C为原点,CA,CB,CC1分别为x轴,y轴,z轴,建立空间直角坐标系,
∵CM=$\frac{5}{2}$,
∴C(0,0,0),A(2,0,0),B1(0,2,4),M(0,0,$\frac{5}{2}$),
$\overrightarrow{AM}$=(-2,0,$\frac{5}{2}$),$\overrightarrow{{B}_{1}M}$=(0,-2,-$\frac{3}{2}$),
设平面AMB1的一个法向量$\overrightarrow{n}$=(x,y,z),
则$\overrightarrow{n}•\overrightarrow{AM}$=0,$\overrightarrow{n}•\overrightarrow{{B}_{1}M}$=0,
∴$\left\{\begin{array}{l}{-2x+\frac{5}{2}z=0}\\{-2y-\frac{5}{2}z=0}\end{array}\right.$,取x=5,得$\overrightarrow{n}$=(5,-3,4),
又平面MB1C 的一个法向量$\overrightarrow{CA}$=(2,0,0),
cos<$\overrightarrow{n},\overrightarrow{CA}$>=$\frac{\overrightarrow{n}•\overrightarrow{CA}}{|\overrightarrow{n}|•|\overrightarrow{CA}|}$=$\frac{\sqrt{2}}{2}$,
由图知二面角A-MB1-C为锐角,
∴二面角A-MB1-C的大小为$\frac{π}{4}$.
点评 本题考查异面直线垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{4}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 因为y=2x是指数函数,所以函数y=2x经过定点(0,1) | |
| B. | 猜想数列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通项公式为an=$\frac{1}{n(n+1)}$(n∈N*) | |
| C. | 由“平面内垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行” | |
| D. | 由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com