分析 (1)根据对数函数的定义可得$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,解得即可;
(2)根据函数的奇偶性的定义证明判断即可;
(3)代值计算即可.
解答 解:(1)∵f(x)=log2(1+x)-log2(1-x),
∴$\left\{\begin{array}{l}{1+x>0}\\{1-x>0}\end{array}\right.$,解得-1<x<1,
故函数的定义域为(-1,1)
(2)由函数知x∈(-1,1)
且$f(-x)={log_2}\frac{1-x}{1+x}$=${log_2}{(\frac{1+x}{1-x})^{-1}}$=${log_2}(\frac{1+x}{1-x})$=-f(x)
∴f(x)在其定义域上是奇函数.
(3)f(x)=0即${log_2}\frac{1+x}{1-x}={log_2}1$,
∴$\frac{1+x}{1-x}=1$得x=0
经检验x=0符合题意,
∴x=0.
点评 本题考查了对数的运算性质和对数函数的性质,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{1}{2}$或$\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$或$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | [1,+∞) | C. | [2,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [3,+∞) | B. | (-∞,3] | C. | (-∞,6] | D. | [6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com