精英家教网 > 高中数学 > 题目详情
2.已知正数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是(  )
A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)

分析 利用基本不等式求得a+b的最小值,把问题转化为m≥-x2+4x+2对任意实数x恒成立,再利用配方法求出-x2+4x+2的最大值得答案.

解答 解:∵a>0,b>0,且$\frac{1}{a}$+$\frac{9}{b}$=1,
∴a+b=(a+b)($\frac{1}{a}+\frac{9}{b}$)=10+$\frac{b}{a}+\frac{9a}{b}$$≥10+2\sqrt{\frac{b}{a}•\frac{9a}{b}}=16$.
当且仅当3a=b,即a=4,b=12时,(a+b)min=16.
若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,
则-x2+4x+18-m≤16,即m≥-x2+4x+2对任意实数x恒成立,
∵-x2+4x+2=-(x-2)2+6≤6,
∴m≥6.
∴实数m的取值范围是[6,+∞).
故选:D.

点评 本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,A和B分别是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和C2:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上的动点,已知C1的焦距为2,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,又当动点A在x轴上的射影为C1的焦点时,点A恰在双曲线2y2-x2=1的渐近线上.
(I)求椭圆C1的标准方程;
(II)若m,n是常数,且$\frac{1}{{m}^{2}}$-$\frac{1}{{n}^{2}}$=-$\frac{1}{2}$.证明|OT|为定值.(其中T为O在AB上的射影)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于一个向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3$,…,$\overrightarrow{a_n}$(n≥3,n∈N*),令$\overrightarrow{S_n}$=$\overrightarrow{a_1}$+$\overrightarrow{a_2}$+$\overrightarrow{a_3}$+…+$\overrightarrow{a_n}$,如果存在$\overrightarrow{a_p}$(p∈N*),使得|$\overrightarrow{a_p}$|≥|$\overrightarrow{S_n}$-$\overrightarrow{a_p}$|,那么称$\overrightarrow{a_p}$是该向量组的“长向量”
(1)若$\overrightarrow{a_3}$是向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的“长向量”,且$\overrightarrow{a_n}$=(n,x+n),求实数x的取值范围;
(2)已知$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$均是向量组$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的“长向量”,试探究$\overrightarrow{a_1}$,$\overrightarrow{a_2}$,$\overrightarrow{a_3}$的等量关系并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对x∈R,y∈R,已知f(x+y)=f(x)•f(y),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2015)}{f(2014)}$+$\frac{f(2016)}{f(2015)}$的值为4030.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若命题“?x0∈R,x02+mx0-3<0”为假命题,则实数m的取值范围是m∈∅.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=log2(1+x)-log2(1-x).
(1)求f(x)的定义域;
(2)试判断f(x)的奇偶性,并证明;
(3)求使f(x)=0的x取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,既是偶函数,又在(-∞,0)上单调递减的是(  )
A.y=$\frac{1}{x}$B.y=e-xC.y=1-x2D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:lg4+lg5•lg20+(lg5)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设随机变量ξ~B(4,$\frac{1}{3}$),则P(ξ=2)的值为(  )
A.$\frac{4}{81}$B.$\frac{4}{27}$C.$\frac{4}{9}$D.$\frac{8}{27}$

查看答案和解析>>

同步练习册答案