精英家教网 > 高中数学 > 题目详情
12.如图,在平面直角坐标系xOy中,A和B分别是椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和C2:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上的动点,已知C1的焦距为2,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,又当动点A在x轴上的射影为C1的焦点时,点A恰在双曲线2y2-x2=1的渐近线上.
(I)求椭圆C1的标准方程;
(II)若m,n是常数,且$\frac{1}{{m}^{2}}$-$\frac{1}{{n}^{2}}$=-$\frac{1}{2}$.证明|OT|为定值.(其中T为O在AB上的射影)

分析 (I)由题意可知双曲线2y2-x2=1的渐近线方程为:y=±$\frac{\sqrt{2}}{2}$x,即$\frac{{b}^{2}}{a}$=$\frac{\sqrt{2}}{2}$,2c=2,即可求得a和b的值,求得椭圆方程;
(II)设直线直线OA的斜率存在,且k≠0时,代入椭圆C1和C2,分别表示出丨OA丨2和丨OB丨2,由$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{AB}$•$\overrightarrow{OT}$=0,表示出$\frac{1}{丨{OT丨}^{2}}$=$\frac{1}{丨OA{丨}^{2}}$+$\frac{1}{丨OB{丨}^{2}}$,将$\frac{1}{{m}^{2}}$-$\frac{1}{{n}^{2}}$=-$\frac{1}{2}$代入即可求得|OT|=$\frac{m}{\sqrt{1+{m}^{2}}}$,直线OA斜率k不存在时和k=0,也成立,所以|OT|为定值.

解答 解:(Ⅰ)双曲线2y2-x2=1的渐近线方程为:y=±$\frac{\sqrt{2}}{2}$x,
由题意可知:可知$\frac{{b}^{2}}{a}$=$\frac{\sqrt{2}}{2}$,
由椭圆C1的半焦距c=1,a2-b2=1,
解得:a=$\sqrt{2}$,b=1,
∴椭圆C1的标准方程$\frac{{x}^{2}}{2}+{y}^{2}=1$,
(II)证明:由当直线OA的斜率存在,且k≠0时,
$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx}\end{array}\right.$,消去y得:x2=$\frac{1}{\frac{1}{2}+{k}^{2}}$,则丨OA丨2=$\frac{1+{k}^{2}}{\frac{1}{2}+{k}^{2}}$=1+$\frac{1}{1+2{k}^{2}}$,
由T,A,B三点共线,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\overrightarrow{AB}$•$\overrightarrow{OT}$=0,
可知丨$\overrightarrow{OT}$丨2=$\frac{丨\overrightarrow{OA}{丨}^{2}•丨OB{丨}^{2}}{丨{AB丨}^{2}}$,
即丨$\overrightarrow{OT}$丨2=$\frac{丨\overrightarrow{OA}{丨}^{2}•丨\overrightarrow{OB}{丨}^{2}}{丨\overrightarrow{OA}{丨}^{2}+丨\overrightarrow{OB}{丨}^{2}}$,
∴$\frac{1}{丨{OT丨}^{2}}$=$\frac{1}{丨OA{丨}^{2}}$+$\frac{1}{丨OB{丨}^{2}}$,
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}=1}\\{y=-\frac{1}{k}x}\end{array}\right.$,消去y,得x2=$\frac{1}{\frac{1}{{m}^{2}}+\frac{1}{{n}^{2}{k}^{2}}}$,则丨OB丨2=$\frac{1+\frac{1}{{k}^{2}}}{\frac{1}{{m}^{2}}+\frac{1}{{n}^{2}{k}^{2}}}$=$\frac{1+{k}^{2}}{\frac{{k}^{2}}{{m}^{2}}+\frac{1}{{n}^{2}}}$,
∴$\frac{1}{丨OB{丨}^{2}}$=$\frac{\frac{{k}^{2}}{{m}^{2}}+\frac{1}{{n}^{2}}}{1+{k}^{2}}$,
∴$\frac{1}{丨OT{丨}^{2}}$=$\frac{\frac{{k}^{2}}{{m}^{2}}+\frac{1}{{n}^{2}}}{1+{k}^{2}}$+$\frac{\frac{1}{2}+{k}^{2}}{1+{k}^{2}}$=$\frac{(1+\frac{1}{{m}^{2}}){k}^{2}+(\frac{1}{2}+\frac{1}{{n}^{2}})}{1+{k}^{2}}$,
∵$\frac{1}{{m}^{2}}$-$\frac{1}{{n}^{2}}$=-$\frac{1}{2}$.
∴$\frac{1}{丨OT{丨}^{2}}$=$\frac{(1+\frac{1}{{m}^{2}})({k}^{2}+1)}{1+{k}^{2}}$=1+$\frac{1}{{m}^{2}}$,
∴|OT|=$\frac{m}{\sqrt{1+{m}^{2}}}$,
当直线OA斜率k不存在时和k=0,也成立,
|OT|为定值.

点评 本题考查椭圆的标准方程及其简单性质,考查直线与椭圆的位置关系的综合应用,计算量大,化简过程繁琐,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若对任意x1,x2∈(0,1],且x1≠x2,都有|$\frac{f({x}_{1})-f({x}_{2})}{\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}}$|≤4,则称y=f(x)为“以4为界的类斜率函数”.
(Ⅰ)试判断y=$\frac{4}{x}$是否为“以4为界的类斜率函数”;

(Ⅱ)若a<0,且函数f(x)=x-1-alnx(a∈R)为“以4为界的类斜率函数”,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若对任意的x∈R,不等式|x|≥(a-1)x恒成立,则实数a的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\frac{{{x^2}+8}}{x-1}$(x>1)的最小值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow q$=(2a,1),$\overrightarrow p$=(2b-c,cosC),且$\overrightarrow p$∥$\overrightarrow q$,三角函数式μ=$\frac{-2cos2C}{1+tanC}$+1的取值范围是(-1,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=ax在区间[0,2]上的最大值是最小值的2倍,则a的值为(  )
A.2B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$\overrightarrow a$=(3,4),则$\overrightarrow a$的负向量的单位向量的坐标是$(-\frac{3}{5},-\frac{4}{5})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=1,若不等式a+b≥-x2+4x+18-m对任意实数x恒成立,则实数m的取值范围是(  )
A.[3,+∞)B.(-∞,3]C.(-∞,6]D.[6,+∞)

查看答案和解析>>

同步练习册答案