精英家教网 > 高中数学 > 题目详情
9.若(1-2x)2016=a0+a1x+…+a2016x2016(x∈R),则$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$的值为(  )
A.2B.0C.-1D.-2

分析 在所给的等式中,令x=0可得a0=1;令x=$\frac{1}{2}$可得a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=0,从而求得$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$的值.

解答 解:在(1-2x)2016=a0+a1x+…+a2016x2016中,令x=0可得,(1-0×2)2016=a0,即a0=1,
在(1-2x)2016=a0+a1x+…+a2016x2016中,令x=$\frac{1}{2}$可得,
(1-2×$\frac{1}{2}$)2016 =a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$,即a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=0,
而a0=1,∴$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2016}}{{2}^{2016}}$=-1,
故选:C.

点评 此题是个基础题.此题考查了二项展开式定理的展开使用及灵活变形求值,特别是解决二项式的系数问题时,常采取赋值法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知两条直线a,b及平面α,给出下列命题:①若a∥b,a⊥α,则b⊥α;②若a⊥α,b⊥α,则a∥b;③若a⊥α,a⊥b,则b∥α;④若a∥α,a⊥b,则b⊥α,其中真命题是①②.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知奇函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-mx(x>0)}\\{0(x=0)}\\{{x}^{2}+2x(x<0)}\end{array}\right.$
(1)求实数m的值,并在给出的直角坐标系中画出y=f(x)的图象
(2)若函数g(x)=a-2在与f(x)有3个交点,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)>1,f(2)=2m-3,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知四棱锥P-ABCD的底面ABCD是正方形,侧棱PA与底面垂直,且PA=AB,若该四棱锥的侧面积为16+4$\sqrt{2}$,则该四棱锥外接球的表面积为(1056-576$\sqrt{2}$)π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\frac{5}{2}$,求$\overrightarrow{c}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.从1,2,3,4,5,6,7,8,9这九个数中,任取两个数相乘,乘积为偶数的取法共有(  )
A.10种B.20种C.26种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an},an>0,a1=1,Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2).
(1)求{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$的n项和为Tn.问Tn>$\frac{1000}{2009}$的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a${\;}^{\frac{1}{2}}$-a${\;}^{-\frac{1}{2}}$=m,则$\frac{{a}^{2}+1}{a}$等于(  )
A.m2-2B.2-m2C.m2+2D.m2

查看答案和解析>>

同步练习册答案