精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
一个四棱锥的三视图如图所示:
(1)根据图中标出的尺寸画出直观图(不要求写画法步骤);
(2)求三棱锥A-PDC的体积;高考资源网
(3)试在PB上求点M,使得CM∥平面PDA并加以证明。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在矩形ABCD中,AB=4,AD=2,E为AB的中点,现将△ADE沿直线DE翻折成△,使平面⊥平面BCDE,F为线段的中点. ks5u
(Ⅰ)求证:EF∥平面
(Ⅱ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知四棱锥的底面是矩形,侧棱长相等,棱锥的高为4,其俯视图如图所示.
(1)作出此四棱锥的主视图和侧视图,并在图中标出相关的数据;
(2)求该四棱锥的侧面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
一个多面体的直观图和三视图如下: (其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
如图1所示,在平行六面体ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在∠BAD的平分线上;
(2)求这个平行六面体的体积。

图1                                      

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

边长为的正方形沿对角线折成的二面角,则的长为(   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(Ⅰ)求该圆台的母线长;
(Ⅱ)求该圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.

查看答案和解析>>

同步练习册答案