分析 由已知可得f($\frac{1}{x}$)+f(x)=1,进而利用分组求和法,可得答案.
解答 解:f(x)=$\frac{x}{1+x}$,
∴f($\frac{1}{x}$)=$\frac{\frac{1}{x}}{1+\frac{1}{x}}$=$\frac{1}{1+x}$,
∴f($\frac{1}{x}$)+f(x)=1,
∴f(1)+f(2)+f(3)+f(4)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…f($\frac{1}{2016}$)=(1)+2015=$\frac{4031}{2}$,
故答案为:$\frac{4031}{2}$
点评 本题考查的知识点是函数的值,其中得到f($\frac{1}{x}$)+f(x)=1,是解答的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
| 频数(个) | 5 | 10 | 20 | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com