精英家教网 > 高中数学 > 题目详情
13.已知等差数列{an}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,Sn为数列an的前n项和,则an•Sn的最小值为(  )
A.0B.-3C.-20D.9

分析 由等差数列{an}的通项公式及等比数列性质列出方程,求出d=-2或d=0,由此能求出an•Sn的最小值.

解答 解:∵等差数列{an}的公差d≠0,且a3,a5,a15成等比数列,a1=3,
∴(3+4d)2=(3+2d)(3+14d),
解得d=-2或d=0,
当d=0时,an=3,Sn=3n,anSn=9n,
当n=1时,an•Sn取最小值9;
当d=-2时,an=3+(n-1)(-2)=5-2n,
Sn=3n+$\frac{n(n-1)}{2}×(-2)$=4n-n2
an•Sn=(5-2n)(4n-n2)=2n3-13n2+20n,
设f(n)=2n3-13n2+20n,则f′(n)=6n2-26n+20=6(n-$\frac{13}{6}$)2-$\frac{49}{6}$,
∴当n=3时,an•Sn取最小值:2×27-13×9+20×3=-3.
综上,an•Sn取最小值为-3.
故选:B.

点评 本题考查等差数列的第n项与前n项和的积的最小值的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=e2x,g(x)=kx+1(k∈R).
(Ⅰ)若直线y=g(x)和函数y=f(x)的图象相切,求k的值;
(Ⅱ)当k>0时,若存在正实数m,使对任意x∈(0,m),都有|f(x)-g(x)|>2x恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知,函数f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(Ⅰ)当a=3时,求f(x)的单调区间;
(Ⅱ)设g(x)=f(x)-x+2alnx,且g(x)有两个极值点x1,x2,其中x1<x2,若g(x1)-g(x2)>t恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤2\\ ax-y-2a≤0\end{array}\right.$,z=x+2y的最小值为-2,则a=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}x,x>0}\\{{3}^{x},x≤0}\end{array}\right.$,则f(f(9))的值为(  )
A.-$\frac{1}{9}$B.-9C.$\frac{1}{9}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ln(x-1)+$\frac{ax}{x+1}$(a∈R).
(1)若函数f(x)在区间(1,4)上单调递增,求a的取值范围;
(2)若函数y=f(x)的图象与直线4x-3y-2=0相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,BC=1,AB=$\sqrt{3}$,AC=$\sqrt{6}$,点P是△ABC的外接圆上的一个动点,则$\overrightarrow{BP}$•$\overrightarrow{BC}$的最大值是(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦点在坐标轴上的双曲线,命题q:?x∈R,x2-4x+a<0.若“p或?q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是某几何体的三视图,则该几何体的体积为(  )
A.6B.9C.12D.18

查看答案和解析>>

同步练习册答案