精英家教网 > 高中数学 > 题目详情
1.已知a>0,x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤2\\ ax-y-2a≤0\end{array}\right.$,z=x+2y的最小值为-2,则a=(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入ax-y-2a=0得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤2\\ ax-y-2a≤0\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=1}\\{x+2y=-2}\end{array}\right.$,解得A(1,-$\frac{3}{2}$),z=x+2y的最小值为-2,
由图形可知A是目标函数的最优解,A在ax-y-2a=0上,
可得:a+$\frac{3}{2}$-2a=0
解得a=$\frac{3}{2}$.
故选:B.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设等比数列{an}的前n项和为Sn,且满足a6=8a3,则$\frac{S_6}{S_3}$=(  )
A.4B.5C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年某省人社厅推出15项改革措施,包括机关事业单位基本养老保险制度改革、调整机关事业单位工资标准、全省县以下机关建立职务与职级并行制度.某市为了了解该市市民对这些改革措施的态度,在该市随机抽取了50名市民进行调查,作出了他们月收入(单位:百元,范围:[15,75])的频率分布直方图,同时得到其中各种月收入情况的市民对该项政策赞成的人数统计表.
月收入赞成人数
[15,25)4
[25,35)8
[35,45)12
[45,55)5
[55,65)2
[65,75]2
(1)求月收入在百元内的频率,并补全这个频率分布直方图,在图中标出相应的纵坐标;
(2)根据频率分布直方图估计这50人的平均月收入;
(3)为了这个改革方案能够更好的实施,从这些调查者中选取代表提供建议,若从月收入在[35,45)百元和[65,75]百元的不赞成的被调查者中随机抽取2人,求这两名代表月收入差不超过1000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数$f(x)=Asin(ωx+\frac{π}{4})(ω>0)$的图象与x轴交点的横坐标构成一个公差为$\frac{π}{3}$的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )
A.向左平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{4}$个单位D.向右平移$\frac{3π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=alnx-x-$\frac{a}{x}$+2a(其中a为常数,a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a>0时,是否存在实数a,使得当x∈[1,e]时,不等式f(x)>0恒成立?如果存在,求a的取值范围;如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-3x-10<0,x∈N*},B={2x<16},则A∩B=(  )
A.{-1,0,1,2,3}B.{1,2,3,4}C.{1,2,3}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知等差数列{an}的公差d≠0,且a3,a5,a15成等比数列,若a1=3,Sn为数列an的前n项和,则an•Sn的最小值为(  )
A.0B.-3C.-20D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,2sinA=acosB,b=$\sqrt{5}$.
(1)若c=2,求sinC;
(2)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α为第二象限角,sin(π+α)=-$\frac{1}{3}$,则tanα=(  )
A.-$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{4}$C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案