| A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求得最优解的坐标,代入ax-y-2a=0得答案.
解答
解:由约束条件$\left\{\begin{array}{l}x≥1\\ x+y≤2\\ ax-y-2a≤0\end{array}\right.$,作出可行域如图,
联立$\left\{\begin{array}{l}{x=1}\\{x+2y=-2}\end{array}\right.$,解得A(1,-$\frac{3}{2}$),z=x+2y的最小值为-2,
由图形可知A是目标函数的最优解,A在ax-y-2a=0上,
可得:a+$\frac{3}{2}$-2a=0
解得a=$\frac{3}{2}$.
故选:B.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
| 月收入 | 赞成人数 |
| [15,25) | 4 |
| [25,35) | 8 |
| [35,45) | 12 |
| [45,55) | 5 |
| [55,65) | 2 |
| [65,75] | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{π}{12}$个单位 | B. | 向右平移$\frac{π}{4}$个单位 | ||
| C. | 向左平移$\frac{π}{4}$个单位 | D. | 向右平移$\frac{3π}{4}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1,2,3} | B. | {1,2,3,4} | C. | {1,2,3} | D. | {1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -3 | C. | -20 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com