精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围.

分析 (Ⅰ)求导数f′(x),判断导数f′(x)的符号即可;
(Ⅱ)由g(x)在其定义域内为增函数,知对?x∈(0,+∞),g'(x)≥0成立,分离出参数a后转化为求函数的最值即可.

解答 解:(Ⅰ)f(x)的定义域为(0,+∞),且f′(x)=$\frac{x+a}{{x}^{2}}$,
①当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;
②当a<0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a;
故f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增.
(Ⅱ)g(x)=ax-$\frac{a}{x}$-5lnx,g(x)的定义域为(0,+∞),
g′(x)=$\frac{a{x}^{2}-5x+a}{{x}^{2}}$,
因为g(x)在其定义域内为增函数,所以?x∈(0,+∞),g(x)≥0,
即ax2-5x+a≥0,则a≥$\frac{5x}{{x}^{2}+1}$,
而$\frac{5x}{{x}^{2}+1}$=$\frac{5}{x+\frac{1}{x}}$≤$\frac{5}{2}$,当且仅当x=1时取等号,
所以a≥$\frac{5}{2}$.

点评 本题考查利用导数研究函数的单调性,属中档题,导数的符号决定函数的增减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln$\frac{1+x}{1-x}$.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)判断函数f(x)在其定义域上的单调性,并用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面上三点A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC中角A为直角,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.曲线C的方程:$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m-2}$=1.
(1)当m为何值时,曲线C表示焦点在x轴上的椭圆?
(2)当m为何值时,曲线C表示双曲线?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=$\frac{1}{3}$x3-4x+4在区间[0,3]上的最小值为(  )
A.4B.1C.-$\frac{4}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\sqrt{{9^x}-{3^x}}$.
(1)求f(x)定义域和值域;
(2)若 $f(x)>\sqrt{6}$,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.
(1)若a=-1,求(∁UA)∩(∁UB);
(2)若A∩B={4},且B⊆U,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.公差不为0的等差数列的第1,3,6项成等比数列,则该数列的公比为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第一组中抽得号码为3的学生,则在第十组中抽得学生号码为(  )
A.50B.49C.48D.47

查看答案和解析>>

同步练习册答案