分析 (Ⅰ)求导数f′(x),判断导数f′(x)的符号即可;
(Ⅱ)由g(x)在其定义域内为增函数,知对?x∈(0,+∞),g'(x)≥0成立,分离出参数a后转化为求函数的最值即可.
解答 解:(Ⅰ)f(x)的定义域为(0,+∞),且f′(x)=$\frac{x+a}{{x}^{2}}$,
①当a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增;
②当a<0时,由f′(x)>0,得x>-a;由f′(x)<0,得x<-a;
故f(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增.
(Ⅱ)g(x)=ax-$\frac{a}{x}$-5lnx,g(x)的定义域为(0,+∞),
g′(x)=$\frac{a{x}^{2}-5x+a}{{x}^{2}}$,
因为g(x)在其定义域内为增函数,所以?x∈(0,+∞),g(x)≥0,
即ax2-5x+a≥0,则a≥$\frac{5x}{{x}^{2}+1}$,
而$\frac{5x}{{x}^{2}+1}$=$\frac{5}{x+\frac{1}{x}}$≤$\frac{5}{2}$,当且仅当x=1时取等号,
所以a≥$\frac{5}{2}$.
点评 本题考查利用导数研究函数的单调性,属中档题,导数的符号决定函数的增减.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 1 | C. | -$\frac{4}{3}$ | D. | -$\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50 | B. | 49 | C. | 48 | D. | 47 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com