精英家教网 > 高中数学 > 题目详情
1.已知平面上三点A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)三点A,B,C不能构成三角形,求实数k应满足的条件;
(2)若△ABC中角A为直角,求k的值.

分析 (1)由三点A,B,C不能构成三角形,可得三点A,B,C在同一条直线上.即$\overrightarrow{BC}$与$\overrightarrow{AC}$共线,利用向量共线定理即可得出.
(2)$\overrightarrow{AB}$=$\overrightarrow{AC}+\overrightarrow{CB}$=(2,4)-(2-k,3)=(k,1).已知A为直角,可得$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,利用$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,即可得出.

解答 解:(1)由三点A,B,C不能构成三角形,可得三点A,B,C在同一条直线上.
∴$\overrightarrow{BC}$与$\overrightarrow{AC}$共线,∴4(2-k)-3×2=0,解得k=$\frac{1}{2}$.
(2)$\overrightarrow{AB}$=$\overrightarrow{AC}+\overrightarrow{CB}$=(2,4)-(2-k,3)=(k,1).∵A为直角,∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=2k+4=0,
解得k=-2.

点评 本题考查了向量共线定理、向量三角形法则、向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数f(x)=ln(2x-x2+3)的定义域为(  )
A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线f(x)=cosx与曲线g(x)=x2+bx+1在交点(0,1)处有公切线,则b=(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线m斜率为k,经过点(-2,4),将直线向右平移10个单位,再向下平移2个单位,得到直线n,若直线n不经过第四象限,则直线l的斜率k的取值范围是$[0,\frac{1}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,若an=-3Sn+4,bn=-log2an+1
(1)求数列{an}的通项公式与数列{bn}的通项公式;
(2)令cn=$\frac{{b}_{n}}{{2}^{n+1}}$,其中n∈N*,记数列{cn}的前n项和为Tn,求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题“若p不正确,则q不正确”的逆命题的等价命题是(  )
A.若p不正确,则q正确B.若q不正确,则p正确
C.若p正确,则q不正确D.若p正确,则q正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$ax2+2x-lnx.
(1)当a=0时,求函数的极值;
(2)若f(x)在[$\frac{1}{3}$,2]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若g(x)在其定义域内为增函数,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.二次函数f(x)的二次项系数为正数,且对任意的x∈R都有f(x)=f(4-x)成立,若f(1-2x2)<f(1+2x-x2),则x的取值范围为(-2,0).

查看答案和解析>>

同步练习册答案