精英家教网 > 高中数学 > 题目详情
8.已知点A(1,1),B(-2,2),则向量$\overrightarrow{OA}$与$\overrightarrow{BO}$的夹角为(  ) (其中O为坐标原点)
A.30°B.90°C.60°D.120°

分析 由已知点的坐标求出向量$\overrightarrow{OA}$与$\overrightarrow{BO}$的坐标,结合$\overrightarrow{OA}•\overrightarrow{BO}=0$得答案.

解答 解:由A(1,1),B(-2,2),得$\overrightarrow{OA}=(1,1),\overrightarrow{BO}=(2,-2)$,
∴$\overrightarrow{OA}•\overrightarrow{BO}=0$,则向量$\overrightarrow{OA}$与$\overrightarrow{BO}$的夹角为90°.
故选:B.

点评 本题考查平面向量的数量积运算,考查向量垂直与夹角的关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在梯形ABCD中,AD∥BC,∠ABC=90°,AB=a,AD=3a,且∠ADC=arcsin$\frac{{\sqrt{5}}}{5}$,PA⊥平面ABCD,PA=a,则二面角P-CD-A的大小为arctan$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.2015年5月1日世界博览会在意大利的米兰开幕,中国馆为了做好世界博览会期间的接待服务工作,从5名男大学生和3名女大学生中选出3人,参加博览会的志愿者服务活动.
(Ⅰ)求选出的3人中至少1名女生的概率;
(Ⅱ)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosωx,1),$\overrightarrow{b}$=(sinωx,cos2ωx-$\frac{1}{2}$)(ω>0),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$,若函数f(x)的图象的一条对称轴与它相邻的一个对称中心的距离为$\frac{π}{4}$.
(1)求f(x)的表达式;
(2)将函数f(x)的图象向右平移$\frac{π}{4}$个单位,再将各点的横坐标缩短到原来的$\frac{1}{2}$(纵坐标不变),得到函数y=g(x)的图象,求函数g(x)在区间$[0,\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方体,PD=CD=2,E、F分别是AB、PB的中点
(1)求证:EF⊥CD;
(2)求DB与平面DEF所成角的大小;
(3)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.过曲线C:y=ex上一点P0(0,1)作曲线C的切线l0交x轴于点Q1(x1,0),又过Q1作x轴的垂线交曲线C于点P1(x1,y1),然后再过P1(x1,y1)作曲线C的切线l1交x轴于点Q2(x2,0),又过Q2作x轴的垂线交曲线C于点P2(x2,y2),…,以此类推,过点Pn的切线ln与x轴相交于点
Qn+1(xn+1,0),再过点Qn+1作x轴的垂线交曲线C于点Pn+1(xn+1,yn+1)(n∈N*).
(1)求x1、x2及数列{xn}的通项公式;
(2)设曲线C与切线ln及直线Pn+1Qn+1所围成的图形面积为Sn,求Sn的表达式;
(3)在满足(2)的条件下,若数列{Sn}的前n项和为Tn,求证:$\frac{{T}_{n+1}}{{T}_{n}}$<$\frac{{x}_{n+1}}{{x}_{n}}$(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本.经统计,得到关于产品重量的样本频率分布直方图和样本频数分布表:
乙流水线
产品重量(单位:克)
频数
(490,495]6
(495,500]8
(500,505]14
(505,510]8
(510,515]4
已知产品的重量合格标准为:重量值落在(495,510]内的产品为合格品;否则为不合格品.
(1)从甲流水线样本的合格品中任意取2件,求重量值落在(505,510]的产品件数X的分布列;
(2)从乙流水线中任取2件产品,试根据样本估计总体的思想,求其中合格品的件数Y的数学期望;
(3)从甲、乙流水线中各取2件产品,用ξ表示“甲流水线合格品数与乙流水线合格品数的差的绝对值”,并用A表示事件“关于x的一元二次方程2x2+2ξx+ξ=0没有实数解”. 试根据样本估计总体的思想,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个口袋中装有n个红球(n≥1且n∈N)和2个白球,从中有放回地连续摸三次,每次摸出两个球,若两个球颜色不同则为中奖,否则不中奖.
(1)当n=3时,设三次摸球中(每次摸球后放回)中奖的次数为ξ,求的ξ分布列;
(2)记三次摸球中(每次摸球后放回)恰有两次中奖的概率为P,当n取多少时,P最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+2x-3,x≤0\\ lnx-a,x>0\end{array}\right.(a∈R)$,若关于x的方程f(x)=k有三个不等的实根,则实数k的取值范围是(-4,-3).

查看答案和解析>>

同步练习册答案