【题目】已知向量 =( , ), =(2,cos2x﹣sin2x).
(1)试判断 与 能否平行?请说明理由.
(2)若x∈(0, ],求函数f(x)= 的最小值.
【答案】
(1)解: 与 不能平行,原因如下:
若向量 =( , ), =(2,cos2x﹣sin2x)平行,
则 =0,
,
∵ ,∴cos2x+2=0,即cos2x=﹣2不成立,
∴ 与 不能平行;
(2)解:f(x)= =
= =
= ,
由x∈(0, ]得,sinx∈(0, ],
∵f(x)= 随着sinx的增大而减小,
∴当sinx= 时,f(x)取到最小值是
【解析】(1)判断出 与 不能平行,利用向量平行的坐标运算列出方程,由二倍角的余弦公式化简后,由余弦函数的值域进行判断;(2)由向量的数量积坐标运算、二倍角的余弦公式以及变形化简f(x),由正弦函数的性质和f(x)的单调性求出f(x)的最小值.
科目:高中数学 来源: 题型:
【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:
(Ⅰ)求频率分布直方图中的值;
(Ⅱ)分别求出成绩落在, 中的学生人数;
(Ⅲ)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )
(参考数据: )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个平面去截正方体,对于截面的边界,有以下图形:①钝角三角形;②直角梯形;③菱形;④正五边形;⑤正六边形.则不可能的图形的选项为( )
A.③④⑤
B.①②⑤
C.①②④
D.②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程x2+y2﹣2x﹣4y+m=0.
(1)若此方程表示圆,求m的取值范围;
(2)若(1)中的圆与直线x+2y﹣4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆过点, , 分别为椭圆的右、下顶点,且.
(1)求椭圆的方程;
(2)设点在椭圆内,满足直线, 的斜率乘积为,且直线, 分别交椭圆于点, .
(i) 若, 关于轴对称,求直线的斜率;
(ii) 求证: 的面积与的面积相等.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com