精英家教网 > 高中数学 > 题目详情
已知正项数列{an}中,其前n项为Sn,且an=2
Sn
-1.
(1)求数列{an}的通项公式;
(2)设Tn是数列{
1
an+1
}的前n项和,Rn是数列{
a1×a2…×an
(a1+1)×(a2+1)…×(an+1)
}的前n项和,比较Rn与Tn大小,并说明理由.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由于正项数列{an}满足an=2
Sn
-1.可得Sn=
(an+1)2
4
,因此当n≥2时,an=Sn-Sn-1,可得an-an-1=2,利用等差数列的通项公式即可得出;
(2)设tn=
1
an+1
=
1
2n
,rn=
a1×a2…×an
(a1+1)×(a2+1)…×(an+1)
=
1×3×5×…×(2n-1)
2×4×6×…×2n
,当n=1时,T1=R1.当n≥2时,证明rn>tn.由于rn=
1×3×5×…×(2n-1)
2×4×6×…×2n
1
2
×
4
3
×
6
5
×
…×
2n
2n-1
×
2n+2
2n+1
=
1
rn
×
n+1
4n+2
,可得rn>tn,即可得出.
解答: 解:(1)∵正项数列{an}满足an=2
Sn
-1.
Sn=
(an+1)2
4

∴当n≥2时,an=Sn-Sn-1=
(an+1)2
4
-
(an-1+1)2
4

化为(an+an-1)(an-an-1-2)=0,
又an+an-1>0,
∴an-an-1=2,
当n=1时,a1=2
a1
-1
,解得a1=1.
∴正项数列{an}是等差数列,
∴an=1+2(n-1)=2n-1.
(2)设tn=
1
an+1
=
1
2n
,rn=
a1×a2…×an
(a1+1)×(a2+1)…×(an+1)
=
1×3×5×…×(2n-1)
2×4×6×…×2n

当n=1时,T1=R1
当n≥2时,证明rn>tn
rn=
1×3×5×…×(2n-1)
2×4×6×…×2n
1
2
×
4
3
×
6
5
×
…×
2n
2n-1
×
2n+2
2n+1
=
1
rn
×
n+1
4n+2

∴rn
n+1
4n+2
1
2n
=tn
∴当n≥2时,Rn>Tn
综上可得:当n=1时,T1=R1
当n≥2时,Rn>Tn
点评:本题考查了递推式的应用、等差数列的通项公式,考查了通过放缩法证明不等式、数列的前n项和,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+(1-2a)x-lnx(a∈R).
(1)求函数f(x)的单调增区间;
(2)当a<0时,求函数f(x)在区间[
1
2
,1]上最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,C=
π
3
m
=(3a,b),
n
=(a,-
b
3
),
m
n
,(
m
+
n
)(-
m
+
n
)=-16,求a、b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
(a+2)x2+bx+a+2
(a,b∈R)定义域为R,则3a+b的取值范围是(  )
A、[-2,+∞)
B、[-6,+∞)
C、[6,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过两条曲线x2+y2+3x-y=0和3x2+3y2+2x+y=0交点的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直四棱柱AC1(侧棱与底面垂直)的底面是边长为1的棱形,∠BCD=120°,侧棱BB1=2,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F.
(1)求证:BD⊥A1C;
(2)求三棱锥C-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=
an
3-2an
,a1=
1
4

(1)bn=
1
an
-1(n∈N*)求数列{bn}的通项公式;
(2)求满足an+an+1+…+a2n-1
1
150
的最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设点P(x,y),定义[OP]=|x|+|y|,其中O为坐标原点.对于下列结论:
(1)符合[OP]=1的点P的轨迹围成的图形的面积为2;
(2)设点P是直线:
5
x+2y-2=0
上任意一点,则[OP]min=1;
(3)设点P是直线:y=kx+1(k∈R)上任意一点,则“使得[OP]最小的点P有无数个”的充要条件是“k=±1”;
(4)设点P是圆x2+y2=1上任意一点,则[OP]max=
2

其中正确的结论序号为(  )
A、(1)、(2)、(3)
B、(1)、(3)、(4)
C、(2)、(3)、(4)
D、(1)、(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块边长为1km的正方形区域ABCD,在点A处有一个可转动的探照灯,其照射角∠PAQ始终为45° (其中点P,Q分别在边BC,CD上),设∠PAB=θ,tanθ=t
(Ⅰ)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值.
(Ⅱ)问探照灯照射在正方形ABCD内部区域的面积S的最大值是多少(km2)?

查看答案和解析>>

同步练习册答案