【题目】在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且 a=2csinA.
(1)确定角C的大小;
(2)若c=3,且△ABC的面积为 ,求a2+b2的值.
【答案】
(1)解:∵ a=2csinA,由正弦定理可得: sinA=2sinCsinA,sinA≠0,可得sinC= ,
∵△ABC是锐角三角形,∴C=
(2)解:由余弦定理可得:c2=a2+b2﹣2abcosC,∴a2+b2﹣ ab=9,
又 = absin ,解得ab=6.
∴a2+b2=6 +9
【解析】(1)由 a=2csinA,由正弦定理可得: sinA=2sinCsinA,sinA≠0,可得sinC= ,根据△ABC是锐角三角形,可得C.(2)由余弦定理可得:c2=a2+b2﹣2abcosC,可得a2+b2﹣ ab=9,又 = absin ,解得ab即可得出.
【考点精析】根据题目的已知条件,利用正弦定理的定义和余弦定理的定义的相关知识可以得到问题的答案,需要掌握正弦定理:;余弦定理:;;.
科目:高中数学 来源: 题型:
【题目】已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求数列{an},{bn}的通项公式;
(2)求数列{an+bn} 的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 与 的夹角为120°,且| |=4,| |=2,
(1)求 ;
(2)求|3 +5 |;
(3)若向量 +k 与5 +2 垂直,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 在R上可导,其导函数为 且函数 的图像如图所示,则下列结论一定成立的是( )
A.函数 的极大值是 ,极小值是
B.函数 的极大值是 ,极小值是
C.函数 的极大值是 ,极小值是
D.函数 的极大值是 ,极小值是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , a1=1,2an+1=an , 若对于任意n∈N* , 当t∈[﹣1,1]时,不等式x2+tx+1>Sn恒成立,则实数x的取值范围为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com