【题目】已知函数
,
.
(Ⅰ)求函数
在
上的最值;
(Ⅱ)若对
,总有
成立,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,已知
内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,F是CD的中点,
![]()
(1)证明:
平面ADE;
(2)若四边形DBCE为矩形,且四边形DBCE所在的平面与圆O所在的平面互相垂直,
,AE与圆O所在的平面的线面角为60°.求二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】由甲乙两位同学组成一个小组参加年级组织的篮球投篮比赛,共进行两轮投篮,每轮甲乙各自独立投篮一次,并且相互不受影响,每次投中得2分,没投中得0分.已知甲同学每次投中的概率为
,乙同学每次投中的概率为![]()
(1)求第一轮投篮时,甲乙两位同学中至少有一人投中的概率;
(2)甲乙两位同学在两轮投篮中,记总得分为随机变量ξ,求ξ的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的图象的一个最高点为(
),与之相邻的一个对称中心为
,将f(x)的图象向右平移
个单位长度得到函数g(x)的图象,则( )
A.g(x)为偶函数
B.g(x)的一个单调递增区间为![]()
C.g(x)为奇函数
D.函数g(x)在
上有两个零点
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】南北朝时代的伟大科学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等,如图,夹在两个平行平面之间的两个几何体的体积分别为
,
,被平行于这两个平面的任意平面截得的两个截面面积分别为
、
,则“
、
不总相等”是“
,
不相等”的( )
![]()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设
,用
表示不超过
的最大整数,则
称为高斯函数,例如:
,
.已知函数
,函数
,则下列命题中真命题的个数是( )
①
图象关于
对称;
②
是奇函数;
③
在
上是增函数;
④
的值域是
.
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com