精英家教网 > 高中数学 > 题目详情

【题目】湖南省某自来水公司每个月(记为一个收费周期)对用户收一次水费,收费标准如下:当每户用水量不超过30吨时,按每吨2元收取;当该用户用水量超过30吨但不超过50吨时,超出部分按每吨3元收取;当该用户用水量超过50吨时,超出部分按每吨4元收取。

(1)记某用户在一个收费周期的用水量为吨,所缴水费为元,写出关于的函数解析式;

(2)在某一个收费周期内,若甲、乙两用户所缴水费的和为214元,且甲、乙两用户用水量之比为3:2,试求出甲、乙两用户在该收费周期内各自的用水量.

【答案】(1); (2)甲乙用水量分别为54吨和36吨.

【解析】

根据题意列出分段函数即可

先分析甲乙两用户的用水量是否超过吨,再分别设出甲乙的用水量,根据解析式列方程计算在收费周期甲乙的用水量和水费即可

(1)由题意知,

(2)假设乙用户用水量为吨,则甲用户用水量为吨,则甲乙所缴水费之和为

∴甲乙两用户用水量都超过吨。

设甲用水吨,乙用水吨,

若甲乙用水都超过则有:,解得:,但;

若甲乙用水都在30到50,则, 解得:,但;

因此甲用水超过50,乙用水在30到50,故, 解得:;

综上甲乙用水量分别为54吨和36吨。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为R的偶函数,当时,f(x)=x2-2x

(1)求出函数f(x)在R上的解析式;

(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.

(3)求使f(x)=1时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,离心率为.点为圆上任意一点, 为坐标原点.

(1)求椭圆的标准方程;

(2)设直线经过点且与椭圆相切, 与圆相交于另一点,点关于原点的对称点为,证明:直线与椭圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(b﹣1)x+1(a,b∈R,a>0).
(1)若f(1)=0,且对任意x∈R,都有f(2﹣x)=f(2+x),求f(x)的解析式;
(2)已知x1 , x2为函数f(x)的两个零点,且x2﹣x1=2,当x∈(x1 , x2)时,g(x)=﹣f(x)+2(x2﹣x)的最大值为,当a≥2时,求h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为菱形,且直线又棱 的中点,

(Ⅰ) 求证:直线

(Ⅱ) 求直线与平面的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位同学在研究函数 时,给出了下面几个结论:

的单调减区间是,单调增区间是

②若,则一定有

③函数的值域为

④若规定,则对任意恒成立.

上述结论中正确的是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的面积为且与轴、轴分别交于两点.

1)求圆的方程;

(2)若直线与线段相交,求实数的取值范围;

(3)试讨论直线与(1)小题所求圆的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在其定义域内有两个不同的极值点.

(Ⅰ)求实数的取值范围;

(Ⅱ)记两个极值点分别为 ),求证: .

查看答案和解析>>

同步练习册答案