精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆的左、右两个焦点分别为F1、F2,离心率为,且抛物线与椭圆C1有公共焦点F2(1,0)。
(1)求椭圆和抛物线的方程;
(2)设A、B为椭圆上的两个动点,,过原点O作直线AB的垂线OD,垂足为D,求点D为轨迹方程。
(1)椭圆的方程为=1,抛物线的方程为
(2)点D的轨迹方程为
解:(1)由题意知椭圆C1中有
所以
故椭圆的方程为=1…………2分
由F2(1,0)为抛物线的焦点可得
所以抛物线的方程为…………4分
(2)当直线AB的斜率存在时
设直线AB的方程为
联立
…………6分




①…………8分
,设
点D在直线AB上,
③…………10分
把②③代入①得

点D的轨迹方程为
当直线AB的斜率不存在时,
点D的轨迹方程为…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知圆的方程为,椭圆的方程,且离心率为,如果相交于两点,且线段恰为圆的直径.
(Ⅰ)求直线的方程和椭圆的方程;
(Ⅱ)如果椭圆的左、右焦点分别是,椭圆上是否存在点,使得,如果存在,请求点的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的左、右焦点分别为,点轴上方椭圆上的一点,且, ,
(Ⅰ)求椭圆的方程和点的坐标;
(Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系;
(Ⅲ)若点是椭圆上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.

(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线使 与平行,若平行,求出直线的方程, 若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
M在椭圆上,以M为圆心的圆与x轴相切于椭圆的右焦点F
(I)若圆My轴相交于AB两点,且△ABM是边长为2的正三角形,求椭圆的方程;
(II)已知点F(1,0),设过点F的直线l交椭圆于CD两点,若直线l绕点F任意转动时,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
分别为椭圆的左、右两个焦点.
(Ⅰ)若椭圆上的点两点的距离之和等于4,
求椭圆的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A、B,以AB为一腰作使∠DAB=直角梯形ABCD,且,CD中点的纵坐标为1.若椭圆以A、B为焦点且经过点D,则此椭圆的方程为
A.    B.    C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

E,F是椭圆的左、右焦点,l是椭圆的一条准线,点P在l上,则∠EPF的最大值是(   )
(A)15°        (B)30°    (C)60°       (D)45°

查看答案和解析>>

同步练习册答案