【题目】已知函数,(,,为常数,为自然对数的底数).
(1)当时,讨论函数在区间上极值点的个数;
(2)当,时,对任意的都有成立,求正实数的取值范围.
【答案】(1)证明见解析;(2)
【解析】
(1)当时,,记,利用导数研究在函数值的情况,将在区间上极值点的个数转化为根的个数问题,分类讨论即可得到;
(2)当,时,对任意的都有,即,即,记,,利用导数分别研究的最值,即可得到答案.
(1)当时,,记,
则,
当时,,时,,
所以当时,取得极小值,又,,,
当,即时,,函数在区间上无极值点;
当即时,有两不同解,
函数在区间上有两个极值点;
当即时,有一解,
函数在区间上有一个极值点;
当即时,,函数在区间上无极值点.
(2)当,时,对任意的都有,
即,即
记,,
由,当时,当时,,
所以当时,取得最大值,最大值为,
又,当时,,当时,,
所以当时,取得最小值,所以只需要,即正实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】东京夏季奥运会推迟至2021年7月23日至8月8日举行,此次奥运会将设置4 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有( )
A.144种B.8种C.24种D.12种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的位置(如图2所示),且。
(1)证明:平面;
(2)求平面与平面所成锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡“忽如一夜春风来”,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)
经常使用信用卡 | 偶尔或不用信用卡 | 合计 | |
40岁及以下 | 15 | 35 | 50 |
40岁以上 | 20 | 30 | 50 |
合计 | 35 | 65 | 100 |
(1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?
(2)①现从所抽取的40岁及以下的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;
②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的极坐标方程为,直线的参数方程为(为参数,).
(1)求曲线和直线的直角坐标方程;
(2)若直线与曲线交于,两点,且,求以为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是两个非零平面向量,则有:
①若,则
②若,则
③若,则存在实数,使得
④若存在实数,使得,则或四个命题中真命题的序号为 __________.(填写所有真命题的序号)
【答案】①③④
【解析】逐一考查所给的结论:
①若,则,据此有:,说法①正确;
②若,取,则,
而,说法②错误;
③若,则,据此有:,
由平面向量数量积的定义有:,
则向量反向,故存在实数,使得,说法③正确;
④若存在实数,使得,则向量与向量共线,
此时,,
若题中所给的命题正确,则,
该结论明显成立.即说法④正确;
综上可得:真命题的序号为①③④.
点睛:处理两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.
【题型】填空题
【结束】
17
【题目】已知在中,,且.
(1)求角的大小;
(2)设数列满足,前项和为,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D的极坐标方程为.
(1)写出曲线C的极坐标方程以及曲线D的直角坐标方程;
(2)若过点(极坐标)且倾斜角为的直线l与曲线C交于M,N两点,弦MN的中点为P,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其图象相邻的最高点之间的距离为,将函数的图象向左平移个单位长度后得到函数的图象,且为奇函数,则( )
A.的图象关于点对称B.的图象关于点对称
C.在上单调递增D.在上单调递增
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com