【题目】为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:
![]()
①样本数据落在区间
的频率为0.45;
②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;
③样本的中位数为480万元.
其中正确结论的个数为( )
A.0B.1C.2D.3
科目:高中数学 来源: 题型:
【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.
评估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
评定等级 | D | C | B | A |
![]()
(1)估计该商业集团各连锁店评估得分的众数和平均数;
(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,
,
,
,
是EA的中点(如图1),将
沿CD折起到图2中
的位置,得到四棱锥是
.
![]()
(1)求证:
平面PDA;
(2)若PD与平面ABCD所成的角为
.且
为锐角三角形,求平面PAD和平面PBC所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,
(
为常数)对于任意的
恒成立.
(1)若
,求
的值;
(2)证明:数列
是等差数列;
(3)若
,关于
的不等式
有且仅有两个不同的整数解,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形,点
在以
为直径的半圆弧上(
不与
,
重合),
为线段
的中点,现将正方形
沿
折起,使得平面
平面
.
![]()
(1)证明:
平面
.
(2)若
,当三棱锥
的体积最大时,求
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,
分别在
轴,
轴上运动,
,点
在线段
上,且
.
(1)求点
的轨迹
的方程;
(2)直线
与
交于
,
两点,
,若直线
,
的斜率之和为2,直线
是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设O为坐标原点,动点M在椭圆C
上,过M作x轴的垂线,垂足为N,点P满足
.
(1)求点P的轨迹方程;
(2)设点
在直线
上,且
.证明:过点P且垂直于OQ的直线
过C的左焦点F.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
,动直线l与椭圆E交于不同的两点
,
,且△AOB的面积为1,其中O为坐标原点.
(1)证明:
为定值;
(2)设线段AB的中点为M,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com