精英家教网 > 高中数学 > 题目详情
15.已知单位向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a•(2\overrightarrow a-3\overrightarrow b)=\frac{1}{2}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°(或$\frac{π}{3}$).

分析 利用向量的数量积与夹角关系,转化求解即可.

解答 解:由题单位向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a•(2\overrightarrow a-3\overrightarrow b)=\frac{1}{2}$,2-3$\overrightarrow{a}•\overrightarrow{b}$=$\frac{1}{2}$.
可得$\overrightarrow a•\overrightarrow b=\frac{1}{2},cos<\overrightarrow a,\overrightarrow b>=\frac{\overrightarrow a•\overrightarrow b}{{|{\overrightarrow a}||{\overrightarrow b}|}}=\frac{1}{2}$,
故向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°(或写成$\frac{π}{3}$).
故答案为:60°(或$\frac{π}{3}$).

点评 本题考查向量的数量积与夹角的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.写出分别满足下列条件的双曲线的标准方程.
(1)曲线上的点P到点F1(4,0)的距离与它到点F2(4,0)的距离的差的绝对值等于6.
(2)曲线上的点P到点F1(-10,0)的距离与它到点F2(10,0)的距离的差等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知A、B是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的左右顶点,离心率为$\frac{1}{2}$,且椭圆过定点$(1,\frac{3}{2})$,P为椭圆右准线上任意一点,直线PA,PB分别交椭圆于M,N.
(1)求椭圆的方程;
(2)若线段MN与x轴交于Q点且$\overrightarrow{MQ}=λ\overrightarrow{QN}$,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设实数a=log32,b=ln2,c=$\frac{1}{{∫}_{0}^{π}sinxdx}$,则(  )
A.b>a>cB.b>c>aC.a>b>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=logax(a>1)的导函数是f′(x),记A=f′(a),B=f′(a+1),C=$\frac{f(a+1)-f(a)}{(a+1)-a}$则A、B、C的大小关系是A>C>B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在四棱锥P-ABCD中,底要ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)求二面角C-BE-D余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知递增数列{an}共有2017项,且各项均不为零,a2017=1,如果从{an}中任取两项ai,aj,当i<j时,aj-ai仍是数列{an}中的项,则数列{an}的各项和S2017=1009.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数g(x)的定义域为{x|x≠0},且g(x)≠0,设p:函数$f(x)=g(x)({\frac{1}{{1-{2^x}}}-\frac{1}{2}})$是偶函数;q:函数g(x)是奇函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin300°+cos390°+tan(-135°)=(  )
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

同步练习册答案