精英家教网 > 高中数学 > 题目详情
5.sin300°+cos390°+tan(-135°)=(  )
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

分析 由条件利用诱导公式化简所给的三角函数式,可得结果.

解答 解:sin300°+cos390°+tan(-135°)=sin(-60°)+cos30°+tan(180°-135°)
=-sin60°+cos30°+tan45°=-$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{2}$+1=1,
故选:B.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知单位向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a•(2\overrightarrow a-3\overrightarrow b)=\frac{1}{2}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°(或$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在等腰直角△ABO中,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,C为AB上靠近A点的三等分点,过C作AB的垂线l,设P为垂线上任一点,$\overrightarrow{OP}$=$\overrightarrow{p}$,则$\overrightarrow{p}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校为鼓励家校互动,与某手机通讯商合作,为教师伴侣流量套餐,为了解该校教师手机流量使用情况,通过抽样,得到100位教师近2年每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如下:若将每位教师的手机月平均使用流量分布视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取3人,求这3人中至多有1人月使用流量不超过300M的概率;
(2)现该通讯商推出三款流量套餐,详情如下:
 套餐名称月套餐费(单位:元) 月套餐流量(单位:M)
 A 20 300
 B 30 500
 C 38 700
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值200M流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200M流量,资费20元/次,依此类推,如果当流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的75%,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数1-2i的共轭复数是1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=$\frac{f(x)}{{e}^{x}}$是偶函数且在[0,+∞)上单调递增,则下列说法中正确的是(  )
A.ef(1)<f(2)B.e3f(-1)>f(2)C.e2f(-1)<f(1)D.ef(-2)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简计算:
(1)已知tanθ=2,求值:$\frac{sin(θ+\frac{π}{2})cos(\frac{π}{2}-θ){-cos}^{2}(π-θ)}{1{+sin}^{2}θ}$;
(2)ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{{x}^{2}+1}$-x)+lg22+(1+lg2)•lg5-2sin30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,满足Sn=$\frac{t}{t-1}$an-n(t>0且t≠1,n∈N*
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式(用t,n表示)
(2)当t=2时,令cn=$\frac{{a}_{n}+1}{{a}_{n}•{a}_{n+1}}$,证明$\frac{2}{3}$≤c1+c2+c3+…+cn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn为等比数列{an}的前n项和•且S4=S3+3a3,a2=9.
(1)求数列{an}的通项公式
(2)设bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案