精英家教网 > 高中数学 > 题目详情
17.化简计算:
(1)已知tanθ=2,求值:$\frac{sin(θ+\frac{π}{2})cos(\frac{π}{2}-θ){-cos}^{2}(π-θ)}{1{+sin}^{2}θ}$;
(2)ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{{x}^{2}+1}$-x)+lg22+(1+lg2)•lg5-2sin30°.

分析 (1)利用诱导公式化简,根据同角三角函数关系式和万能公式化简后代入求值即可.
(2)根据对数的运算法则计算即可.

解答 解:(1)由$\frac{sin(θ+\frac{π}{2})cos(\frac{π}{2}-θ){-cos}^{2}(π-θ)}{1{+sin}^{2}θ}$=$\frac{sinθsinθ-co{s}^{2}θ}{2si{n}^{2}θ+co{s}^{2}θ}$=$\frac{ta{n}^{2}θ-1}{2ta{n}^{2}θ+1}$.
∵tanθ=2,
∴$\frac{sin(θ+\frac{π}{2})cos(\frac{π}{2}-θ){-cos}^{2}(π-θ)}{1{+sin}^{2}θ}$=$\frac{4-1}{8+1}=\frac{1}{3}$.
(2)ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{{x}^{2}+1}$-x)+lg22+(1+lg2)•lg5-2sin30°.
=ln[($\sqrt{{x}^{2}+1}$+x)($\sqrt{{x}^{2}+1}$-x)]+lg2•lg2+lg2•lg5+lg5-1
=ln1+lg2(lg2+lg5)+lg5-1
=0+lg2+lg5-1
=0

点评 本题主要考察了同角三角函数关系式和万能公式的应用,以及对数的运算,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知递增数列{an}共有2017项,且各项均不为零,a2017=1,如果从{an}中任取两项ai,aj,当i<j时,aj-ai仍是数列{an}中的项,则数列{an}的各项和S2017=1009.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin300°+cos390°+tan(-135°)=(  )
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.a,b,c是非直角△ABC中角A、B、C的对边,且sin2A+sin2B-sin2C=absinAsinBsin2C,则△ABC的面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(-2,0)的直线l与椭圆x2+2y2=4交于P1,P2两点,设线段P1P2的中点为P.若直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若△ABC的内角A,C,B成等差数列,且△ABC的面积为2$\sqrt{3}$,则AB边的最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列满足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为λ<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知甲、乙两煤矿每年的产量分别为200万吨和260万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站毎年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/t和1.5元/t,乙煤矿运往东车站和西车站的运费价格分别为0.8元/t和1.6元/t.煤矿应怎样编制调运方案,能使总运费最少?

查看答案和解析>>

同步练习册答案