精英家教网 > 高中数学 > 题目详情
8.已知z1=1-i,z2=2+2i.
(1)求z1•z2
(2)若$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,求z.

分析 (1)直接利用复数代数形式的乘法运算化简得答案;
(2)把已知等式通分变形求得z,代入z1、z2,再由复数代数形式的乘除运算化简得答案.

解答 解:(1)∵z1=1-i,z2=2+2i.
∴z1•z2=(1-i)(2+2i)=4;
(2)由$\frac{1}{z}$=$\frac{1}{{z}_{1}}$+$\frac{1}{{z}_{2}}$,得$z=\frac{{z}_{1}•{z}_{2}}{{z}_{1}+{z}_{2}}=\frac{4}{(1-i)+(2+2i)}=\frac{4}{3+i}=\frac{6}{5}-\frac{2}{5}i$.

点评 本题考查复数代数形式的乘除运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的前n项和为Sn,且a1=10,${a_{n+1}}=9{S_n}+10({n∈{N^*}})$,若m(-1)n+2016lgan<10lgan+(-1)n+2017对任意n∈N*恒成立,则实数m的取值范围是(-10,$\frac{19}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cost\\ y=2sint+a\end{array}\right.$(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ=sinθ.
(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)若曲线C1和C2共有四个不同交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在等腰直角△ABO中,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,C为AB上靠近A点的三等分点,过C作AB的垂线l,设P为垂线上任一点,$\overrightarrow{OP}$=$\overrightarrow{p}$,则$\overrightarrow{p}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.欧拉公式exi=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e3i表示的复数在复平面中位于二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某学校为鼓励家校互动,与某手机通讯商合作,为教师伴侣流量套餐,为了解该校教师手机流量使用情况,通过抽样,得到100位教师近2年每人手机月平均使用流量L(单位:M)的数据,其频率分布直方图如下:若将每位教师的手机月平均使用流量分布视为其手机月使用流量,并将频率为概率,回答以下问题.
(1)从该校教师中随机抽取3人,求这3人中至多有1人月使用流量不超过300M的概率;
(2)现该通讯商推出三款流量套餐,详情如下:
 套餐名称月套餐费(单位:元) 月套餐流量(单位:M)
 A 20 300
 B 30 500
 C 38 700
这三款套餐都有如下附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值200M流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200M流量,资费20元/次,依此类推,如果当流量有剩余,系统将自动清零,无法转入次月使用.
学校欲订购其中一款流量套餐,为教师支付月套餐费,并承担系统自动充值的流量资费的75%,其余部分由教师个人承担,问学校订购哪一款套餐最经济?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.复数1-2i的共轭复数是1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简计算:
(1)已知tanθ=2,求值:$\frac{sin(θ+\frac{π}{2})cos(\frac{π}{2}-θ){-cos}^{2}(π-θ)}{1{+sin}^{2}θ}$;
(2)ln($\sqrt{{x}^{2}+1}$+x)+ln($\sqrt{{x}^{2}+1}$-x)+lg22+(1+lg2)•lg5-2sin30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)求过点A(2,2)的切线方程.

查看答案和解析>>

同步练习册答案