精英家教网 > 高中数学 > 题目详情
10.已知函数y=$\frac{f(x)}{{e}^{x}}$是偶函数且在[0,+∞)上单调递增,则下列说法中正确的是(  )
A.ef(1)<f(2)B.e3f(-1)>f(2)C.e2f(-1)<f(1)D.ef(-2)<f(-1)

分析 由题意函数y=$\frac{f(x)}{{e}^{x}}$是偶函数且在[0,+∞)上单调递增,可得$\frac{f(2)}{{e}^{2}}$>$\frac{f(1)}{e}$,即可得出结论.

解答 解:由题意函数y=$\frac{f(x)}{{e}^{x}}$是偶函数且在[0,+∞)上单调递增,
∴$\frac{f(2)}{{e}^{2}}$>$\frac{f(1)}{e}$,
∴ef(1)<f(2),
故选A.

点评 本题考查函数单调性的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,在四棱锥P-ABCD中,底要ABCD为平行四边形,∠DBA=30°,$\sqrt{3}$AB=2BD,PD=AD,PD⊥底面ABCD,E为PC上一点,且PE=$\frac{1}{2}$EC.
(1)证明:PA⊥BD;
(2)求二面角C-BE-D余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin$\frac{{a}_{n}π}{4}$<$\frac{1}{λ(1-\frac{1}{{a}_{1}})(1-\frac{1}{{a}_{2}})…(1-\frac{1}{{a}_{n}})\sqrt{{a}_{n}+1}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007,且存在正整数k,使c1,c39,ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.实部为1,虚部为2的复数所对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.sin300°+cos390°+tan(-135°)=(  )
A.$\sqrt{3}$-1B.1C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算cos24°+cos144°+cos264°=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(-2,0)的直线l与椭圆x2+2y2=4交于P1,P2两点,设线段P1P2的中点为P.若直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和Sn,且a3=7,S11=143,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知ABCD是复平面内的平行四边形,并且A,B,C三点对应的复数分别是3+i,-2i,-1-i,求D点对应的复数;
(2)已知复数Z1=2,$\frac{{Z}_{2}}{{Z}_{1}}$=i,并且|z|=2$\sqrt{2}$,|z-z1|=|z-z2|,求z.

查看答案和解析>>

同步练习册答案