·ÖÎö £¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÔÚa1b1+a2b2+a3b3+¡+anbn=£¨n-1£©•2n+2+4ÖзֱðÁîn=1£¬2£¬3£¬µÃµ½¹ØÓÚdÓëqµÄ·½³Ì×飬Çó½â·½³Ì×é¿ÉµÃ$\left\{\begin{array}{l}{{d}_{1}=-\frac{2}{3}}\\{{q}_{1}=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{{d}_{2}=2}\\{{q}_{2}=2}\end{array}\right.$£¬¼ìÑéd=q=2·ûºÏÌâÒ⣬´Ó¶øÇóµÃan=2n£¬${b}_{n}={2}^{n}$£»
£¨2£©ÓÉan=2n£¬µÃsin$\frac{{a}_{n}¦Ð}{4}=sin\frac{n¦Ð}{2}$£¬Éè${b}_{n}=\frac{1}{£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$£¬°ÑÔ²»µÈʽת»¯Îª$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$£¬ÇÒ$\frac{{b}_{n+1}}{{b}_{n}}=\frac{2£¨n+1£©}{\sqrt{2n+1}•\sqrt{2n+3}}£¾1$£¬¿ÉµÃÊýÁÐ{bn}µ¥µ÷µÝÔö£¬¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬·Ö¢Ùn=4m+4ºÍn=4m+2£¬m¡ÊN£¬¢Ún=4m+1£¬m¡ÊN£¬¢Ûn=4m+3£¬m¡ÊNʱÇó½â·Ç0ÕûÊý¦ËµÄÖµ£»
£¨3£©ÓÉÌâÒâ¿ÉÖª£¬d=0ʱ³ÉÁ¢£»µ±d£¾0ʱ£¬½áºÏ${{c}_{39}}^{2}={c}_{1}{c}_{k}$£¬µÃ£¨2014-38d£©[2014+£¨k-39£©d]=20142£¬¼´k=$\frac{39d-53¡Á77}{d-53}$=$\frac{39£¨d-53£©+53¡Á39-53¡Á77}{d-53}$=$39-\frac{53¡Á38}{d-53}=39+\frac{53¡Á38}{53-d}$¡ÊN*£®ÔÙÓÉd£¾0ÇÒc1£¾0Çó³ö¦ËµÄËùÓпÉÄÜȡֵµÃ´ð°¸£®
½â´ð ½â£º£¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
¡ßa1b1+a2b2+a3b3+¡+anbn=£¨n-1£©•2n+2+4£¬
Áîn=1£¬2£¬3£¬·Ö±ðµÃa1b1=4£¬a1b1+a2b2=20£¬a1b1+a2b2+a3b3=68£¬
ÓÖa1=2£¬
¡à$\left\{\begin{array}{l}{{a}_{1}={b}_{1}=2}\\{{a}_{2}{b}_{2}=16}\\{{a}_{3}{b}_{3}=48}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{£¨2+d£©•2q=16}\\{£¨2+2d£©•2{q}^{2}=48}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{d}_{1}=-\frac{2}{3}}\\{{q}_{1}=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{{d}_{2}=2}\\{{q}_{2}=2}\end{array}\right.$£®
¾¼ìÑéd=q=2·ûºÏÌâÒ⣬$d=-\frac{2}{3}£¬q=6$²»ºÏÌâÒ⣬ÉáÈ¥£®
¡àan=2n£¬${b}_{n}={2}^{n}$£»
£¨2£©ÓÉan=2n£¬µÃsin$\frac{{a}_{n}¦Ð}{4}=sin\frac{n¦Ð}{2}$£¬
Éè${b}_{n}=\frac{1}{£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$£¬
Ôò²»µÈʽsin$\frac{{a}_{n}¦Ð}{4}$£¼$\frac{1}{¦Ë£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$µÈ¼ÛÓÚ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$£¬
¡ßbn£¾0£¬ÇÒ$\frac{{b}_{n+1}}{{b}_{n}}=\frac{2£¨n+1£©}{\sqrt{2n+1}•\sqrt{2n+3}}£¾1$£¬
¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£¬
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±n=4m+4ºÍn=4m+2£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=0$£¬²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$ºã³ÉÁ¢£»
¢Úµ±n=4m+1£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=1$£¬¦Ë£¼$£¨{b}_{n}£©_{min}=\frac{2\sqrt{3}}{3}$£»
¢Ûµ±n=4m+3£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=-1$£¬$-¦Ë£¼£¨{b}_{n}£©_{min}={b}_{3}=\frac{16\sqrt{7}}{35}$£®
×ÛÉÏ£¬¦Ë¡Ê£¨$-\frac{16\sqrt{7}}{35}£¬\frac{2\sqrt{3}}{3}$£©£¬ÓɦËÊÇ·Ç0ÕûÊý£¬¿ÉÖª´æÔÚ¦Ë=1£¨-1²»Âú×ãÌâÒ⣬ÉᣩÂú×ãÌõ¼þ£»
£¨3£©ÓÉÌâÒâ¿ÉÖª£¬d=0ʱ³ÉÁ¢£»
µ±d£¾0ʱ£¬c39=c1+38d=2014£¬µÃc1=2014-38d£®
ck=c39+£¨k-39£©d=2014+£¨k-39£©d£¬
ÓÉ${{c}_{39}}^{2}={c}_{1}{c}_{k}$£¬µÃ£¨2014-38d£©[2014+£¨k-39£©d]=20142£¬µÃ
k=$\frac{39d-53¡Á77}{d-53}$=$\frac{39£¨d-53£©+53¡Á39-53¡Á77}{d-53}$=$39-\frac{53¡Á38}{d-53}=39+\frac{53¡Á38}{53-d}$¡ÊN*£®
ÓÖ¡ß$\left\{\begin{array}{l}{{c}_{1}=2014-38d=38£¨53-d£©£¾0}\\{d£¾0}\end{array}\right.$£¬0£¼53-d£¼53£®
¡à53-d=1£¬2£¬19£¬53£¬
Ôòd=0£¬52£¬51£¬34£¬
¡à¹«²îdµÄËùÓпÉÄÜȡֵ֮ºÍΪ137£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁËÀûÓ÷ÅËõ·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÊÇѹÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {0£¬1£¬2} | B£® | {-1£¬1£¬2} | C£® | {-1£¬0£¬2} | D£® | {-1£¬0£¬1} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{3}$ | B£® | -$\frac{1}{3}$ | C£® | -$\frac{3}{2}$ | D£® | $\frac{3}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÌײÍÃû³Æ | ÔÂÌײͷѣ¨µ¥Î»£ºÔª£© | ÔÂÌײÍÁ÷Á¿£¨µ¥Î»£ºM£© |
| A | 20 | 300 |
| B | 30 | 500 |
| C | 38 | 700 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ef£¨1£©£¼f£¨2£© | B£® | e3f£¨-1£©£¾f£¨2£© | C£® | e2f£¨-1£©£¼f£¨1£© | D£® | ef£¨-2£©£¼f£¨-1£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨0£©£¼f£¨4£© | B£® | f£¨0£©=f£¨4£© | C£® | f£¨0£©£¾f£¨4£© | D£® | ÎÞ·¨È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com