1£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a1=2£¬{an}µÄǰnÏîºÍΪSn£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒa1b1+a2b2+a3b3+¡­+anbn=£¨n-1£©•2n+2+4¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚ·ÇÁãÕûÊý¦Ë£¬Ê¹²»µÈʽsin$\frac{{a}_{n}¦Ð}{4}$£¼$\frac{1}{¦Ë£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡­£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©¸÷Ïî¾ùΪÕýÕûÊýµÄÎÞÇîµÈ²îÊýÁÐ{cn}£¬Âú×ãc39=a1007£¬ÇÒ´æÔÚÕýÕûÊýk£¬Ê¹c1£¬c39£¬ck³ÉµÈ±ÈÊýÁУ¬ÈôÊýÁÐ{cn}µÄ¹«²îΪd£¬ÇódµÄËùÓпÉÄÜȡֵ֮ºÍ£®

·ÖÎö £¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÔÚa1b1+a2b2+a3b3+¡­+anbn=£¨n-1£©•2n+2+4ÖзֱðÁîn=1£¬2£¬3£¬µÃµ½¹ØÓÚdÓëqµÄ·½³Ì×飬Çó½â·½³Ì×é¿ÉµÃ$\left\{\begin{array}{l}{{d}_{1}=-\frac{2}{3}}\\{{q}_{1}=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{{d}_{2}=2}\\{{q}_{2}=2}\end{array}\right.$£¬¼ìÑéd=q=2·ûºÏÌâÒ⣬´Ó¶øÇóµÃan=2n£¬${b}_{n}={2}^{n}$£»
£¨2£©ÓÉan=2n£¬µÃsin$\frac{{a}_{n}¦Ð}{4}=sin\frac{n¦Ð}{2}$£¬Éè${b}_{n}=\frac{1}{£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡­£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$£¬°ÑÔ­²»µÈʽת»¯Îª$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$£¬ÇÒ$\frac{{b}_{n+1}}{{b}_{n}}=\frac{2£¨n+1£©}{\sqrt{2n+1}•\sqrt{2n+3}}£¾1$£¬¿ÉµÃÊýÁÐ{bn}µ¥µ÷µÝÔö£¬¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬·Ö¢Ùn=4m+4ºÍn=4m+2£¬m¡ÊN£¬¢Ún=4m+1£¬m¡ÊN£¬¢Ûn=4m+3£¬m¡ÊNʱÇó½â·Ç0ÕûÊý¦ËµÄÖµ£»
£¨3£©ÓÉÌâÒâ¿ÉÖª£¬d=0ʱ³ÉÁ¢£»µ±d£¾0ʱ£¬½áºÏ${{c}_{39}}^{2}={c}_{1}{c}_{k}$£¬µÃ£¨2014-38d£©[2014+£¨k-39£©d]=20142£¬¼´k=$\frac{39d-53¡Á77}{d-53}$=$\frac{39£¨d-53£©+53¡Á39-53¡Á77}{d-53}$=$39-\frac{53¡Á38}{d-53}=39+\frac{53¡Á38}{53-d}$¡ÊN*£®ÔÙÓÉd£¾0ÇÒc1£¾0Çó³ö¦ËµÄËùÓпÉÄÜȡֵµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÉèÊýÁÐ{an}µÄ¹«²îΪd£¬ÊýÁÐ{bn}µÄ¹«±ÈΪq£¬
¡ßa1b1+a2b2+a3b3+¡­+anbn=£¨n-1£©•2n+2+4£¬
Áîn=1£¬2£¬3£¬·Ö±ðµÃa1b1=4£¬a1b1+a2b2=20£¬a1b1+a2b2+a3b3=68£¬
ÓÖa1=2£¬
¡à$\left\{\begin{array}{l}{{a}_{1}={b}_{1}=2}\\{{a}_{2}{b}_{2}=16}\\{{a}_{3}{b}_{3}=48}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{£¨2+d£©•2q=16}\\{£¨2+2d£©•2{q}^{2}=48}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{d}_{1}=-\frac{2}{3}}\\{{q}_{1}=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{{d}_{2}=2}\\{{q}_{2}=2}\end{array}\right.$£®
¾­¼ìÑéd=q=2·ûºÏÌâÒ⣬$d=-\frac{2}{3}£¬q=6$²»ºÏÌâÒ⣬ÉáÈ¥£®
¡àan=2n£¬${b}_{n}={2}^{n}$£»
£¨2£©ÓÉan=2n£¬µÃsin$\frac{{a}_{n}¦Ð}{4}=sin\frac{n¦Ð}{2}$£¬
Éè${b}_{n}=\frac{1}{£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡­£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$£¬
Ôò²»µÈʽsin$\frac{{a}_{n}¦Ð}{4}$£¼$\frac{1}{¦Ë£¨1-\frac{1}{{a}_{1}}£©£¨1-\frac{1}{{a}_{2}}£©¡­£¨1-\frac{1}{{a}_{n}}£©\sqrt{{a}_{n}+1}}$µÈ¼ÛÓÚ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$£¬
¡ßbn£¾0£¬ÇÒ$\frac{{b}_{n+1}}{{b}_{n}}=\frac{2£¨n+1£©}{\sqrt{2n+1}•\sqrt{2n+3}}£¾1$£¬
¡àbn+1£¾bn£¬ÊýÁÐ{bn}µ¥µ÷µÝÔö£¬
¼ÙÉè´æÔÚÕâÑùµÄʵÊý¦Ë£¬Ê¹µÃ²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬Ôò
¢Ùµ±n=4m+4ºÍn=4m+2£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=0$£¬²»µÈʽ$¦Ësin\frac{n¦Ð}{2}£¼{b}_{n}$ºã³ÉÁ¢£»
¢Úµ±n=4m+1£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=1$£¬¦Ë£¼$£¨{b}_{n}£©_{min}=\frac{2\sqrt{3}}{3}$£»
¢Ûµ±n=4m+3£¬m¡ÊNʱ£¬sin$\frac{n¦Ð}{2}=-1$£¬$-¦Ë£¼£¨{b}_{n}£©_{min}={b}_{3}=\frac{16\sqrt{7}}{35}$£®
×ÛÉÏ£¬¦Ë¡Ê£¨$-\frac{16\sqrt{7}}{35}£¬\frac{2\sqrt{3}}{3}$£©£¬ÓɦËÊÇ·Ç0ÕûÊý£¬¿ÉÖª´æÔÚ¦Ë=1£¨-1²»Âú×ãÌâÒ⣬ÉᣩÂú×ãÌõ¼þ£»
£¨3£©ÓÉÌâÒâ¿ÉÖª£¬d=0ʱ³ÉÁ¢£»
µ±d£¾0ʱ£¬c39=c1+38d=2014£¬µÃc1=2014-38d£®
ck=c39+£¨k-39£©d=2014+£¨k-39£©d£¬
ÓÉ${{c}_{39}}^{2}={c}_{1}{c}_{k}$£¬µÃ£¨2014-38d£©[2014+£¨k-39£©d]=20142£¬µÃ
k=$\frac{39d-53¡Á77}{d-53}$=$\frac{39£¨d-53£©+53¡Á39-53¡Á77}{d-53}$=$39-\frac{53¡Á38}{d-53}=39+\frac{53¡Á38}{53-d}$¡ÊN*£®
ÓÖ¡ß$\left\{\begin{array}{l}{{c}_{1}=2014-38d=38£¨53-d£©£¾0}\\{d£¾0}\end{array}\right.$£¬0£¼53-d£¼53£®
¡à53-d=1£¬2£¬19£¬53£¬
Ôòd=0£¬52£¬51£¬34£¬
¡à¹«²îdµÄËùÓпÉÄÜȡֵ֮ºÍΪ137£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁËÀûÓ÷ÅËõ·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬ÌåÏÖÁË·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£¬ÊÇѹÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèU={-1£¬0£¬1£¬2}£¬¼¯ºÏA={x|x2£¼1£¬x¡ÊU}£¬Ôò∁UA=£¨¡¡¡¡£©
A£®{0£¬1£¬2}B£®{-1£¬1£¬2}C£®{-1£¬0£¬2}D£®{-1£¬0£¬1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\sqrt{3}x+y-4=0$£¬ÇúÏßC2£º$\left\{\begin{array}{l}x=cos¦È\\ y=1+sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£®
£¨¢ñ£©ÇóÇúÏßC1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÇúÏßC3£º$\left\{\begin{array}{l}x=tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£¬t£¾0£¬$0£¼¦Á£¼\frac{¦Ð}{2}$£©·Ö±ð½»C1£¬C2ÓÚA£¬BÁ½µã£¬µ±¦ÁÈ¡ºÎֵʱ£¬$\frac{{|{OB}|}}{{|{OA}|}}$È¡µÃ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ËÄÀâ×¶P-ABCDµÄµ×ÃæABCDÊÇÆ½ÐÐËıßÐΣ¬²àÃæPADÊDZ߳¤Îª2µÄÕýÈý½ÇÐΣ¬AB=BD=$\sqrt{7}$£¬PB=3£®
£¨1£©ÇóÖ¤£ºÆ½ÃæPAD¡ÍÆ½ÃæABCD£»
£¨2£©ÉèQÊÇÀâPCÉϵĵ㣬µ±PA¡ÎÆ½ÃæBDQʱ£¬Çó¶þÃæ½ÇA-BD-QµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬ÔÚµÈÑüÖ±½Ç¡÷ABOÖУ¬Éè$\overrightarrow{OA}$=$\overrightarrow{a}$£¬$\overrightarrow{OB}$=$\overrightarrow{b}$£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1£¬CΪABÉÏ¿¿½üAµãµÄÈýµÈ·Öµã£¬¹ýC×÷ABµÄ´¹Ïßl£¬ÉèPΪ´¹ÏßÉÏÈÎÒ»µã£¬$\overrightarrow{OP}$=$\overrightarrow{p}$£¬Ôò$\overrightarrow{p}$•£¨$\overrightarrow{b}$-$\overrightarrow{a}$£©=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®-$\frac{1}{3}$C£®-$\frac{3}{2}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®É躯Êýf£¨x£©=£¨ex-1£©£¨x-1£©k£¬k¡ÊN*£¬Èôº¯Êýy=f£¨x£©ÔÚx=1´¦È¡µ½¼«Ð¡Öµ£¬ÔòkµÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Ä³Ñ§Ð£Îª¹ÄÀø¼ÒУ»¥¶¯£¬ÓëijÊÖ»úͨѶÉ̺Ï×÷£¬Îª½Ìʦ°éÂÂÁ÷Á¿Ìײͣ¬ÎªÁ˽â¸ÃУ½ÌʦÊÖ»úÁ÷Á¿Ê¹ÓÃÇé¿ö£¬Í¨¹ý³éÑù£¬µÃµ½100λ½Ìʦ½ü2ÄêÿÈËÊÖ»úÔÂÆ½¾ùʹÓÃÁ÷Á¿L£¨µ¥Î»£ºM£©µÄÊý¾Ý£¬ÆäƵÂÊ·Ö²¼Ö±·½Í¼ÈçÏ£ºÈô½«Ã¿Î»½ÌʦµÄÊÖ»úÔÂÆ½¾ùʹÓÃÁ÷Á¿·Ö²¼ÊÓΪÆäÊÖ»úÔÂʹÓÃÁ÷Á¿£¬²¢½«ÆµÂÊΪ¸ÅÂÊ£¬»Ø´ðÒÔÏÂÎÊÌ⣮
£¨1£©´Ó¸ÃУ½ÌʦÖÐËæ»ú³éÈ¡3ÈË£¬ÇóÕâ3ÈËÖÐÖÁ¶àÓÐ1ÈËÔÂʹÓÃÁ÷Á¿²»³¬¹ý300MµÄ¸ÅÂÊ£»
£¨2£©ÏÖ¸ÃͨѶÉÌÍÆ³öÈý¿îÁ÷Á¿Ìײͣ¬ÏêÇéÈçÏ£º
 ÌײÍÃû³ÆÔÂÌײͷѣ¨µ¥Î»£ºÔª£© ÔÂÌײÍÁ÷Á¿£¨µ¥Î»£ºM£©
 A 20 300
 B 30 500
 C 38 700
ÕâÈý¿îÌײͶ¼ÓÐÈçϸ½¼ÓÌõ¿î£ºÌײͷÑÔ³õÒ»´ÎÐÔÊÕÈ¡£¬ÊÖ»úʹÓÃÒ»µ©³¬³öÌײÍÁ÷Á¿£¬ÏµÍ³¾Í×Ô¶¯°ïÓû§³äÖµ200MÁ÷Á¿£¬×Ê·Ñ20Ôª£»Èç¹ûÓÖ³¬³ö³äÖµÁ÷Á¿£¬ÏµÍ³¾ÍÔÙ´Î×Ô¶¯°ïÓû§³äÖµ200MÁ÷Á¿£¬×Ê·Ñ20Ôª/´Î£¬ÒÀ´ËÀàÍÆ£¬Èç¹ûµ±Á÷Á¿ÓÐÊ£Ó࣬ϵͳ½«×Ô¶¯ÇåÁ㣬ÎÞ·¨×ªÈë´ÎÔÂʹÓã®
ѧУÓû¶©¹ºÆäÖÐÒ»¿îÁ÷Á¿Ìײͣ¬Îª½Ìʦ֧¸¶ÔÂÌײͷѣ¬²¢³Ðµ£ÏµÍ³×Ô¶¯³äÖµµÄÁ÷Á¿×ʷѵÄ75%£¬ÆäÓಿ·ÖÓɽÌʦ¸öÈ˳е££¬ÎÊѧУ¶©¹ºÄÄÒ»¿îÌײÍ×î¾­¼Ã£¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªº¯Êýy=$\frac{f£¨x£©}{{e}^{x}}$ÊÇżº¯ÊýÇÒÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÔòÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ef£¨1£©£¼f£¨2£©B£®e3f£¨-1£©£¾f£¨2£©C£®e2f£¨-1£©£¼f£¨1£©D£®ef£¨-2£©£¼f£¨-1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èôº¯Êýf£¨x£©ÔÚRÉϿɵ¼£¬ÇÒf£¨x£©=x2+2f¡ä£¨1£©x+3£¬Ôò£¨¡¡¡¡£©
A£®f£¨0£©£¼f£¨4£©B£®f£¨0£©=f£¨4£©C£®f£¨0£©£¾f£¨4£©D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸