精英家教网 > 高中数学 > 题目详情
11.若函数f(x)在R上可导,且f(x)=x2+2f′(1)x+3,则(  )
A.f(0)<f(4)B.f(0)=f(4)C.f(0)>f(4)D.无法确定

分析 求函数的导数,令x=1,求出函数的解析式,结合二次函数的对称性进行求解判断即可.

解答 解:函数的导数f′(x)=2x+2f′(1),
令x=1,得f′(1)=2+2f′(1),
即f′(1)=-2,
f(x)=x2-4x+3,则函数的对称轴为x=2,
则f(0)=f(4),
故选:B

点评 本题主要考查二次函数的性质的应用,根据函数的导数公式求出f′(1)的值是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}为等差数列,a1=2,{an}的前n项和为Sn,数列{bn}为等比数列,且a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+2+4对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在非零整数λ,使不等式sin$\frac{{a}_{n}π}{4}$<$\frac{1}{λ(1-\frac{1}{{a}_{1}})(1-\frac{1}{{a}_{2}})…(1-\frac{1}{{a}_{n}})\sqrt{{a}_{n}+1}}$对一切n∈N*都成立?若存在,求出λ的值;若不存在,说明理由.
(3)各项均为正整数的无穷等差数列{cn},满足c39=a1007,且存在正整数k,使c1,c39,ck成等比数列,若数列{cn}的公差为d,求d的所有可能取值之和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(-2,0)的直线l与椭圆x2+2y2=4交于P1,P2两点,设线段P1P2的中点为P.若直线l的斜率为k1(k1≠0),直线OP的斜率为k2,则k1k2等于(  )
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}的前n项和Sn,且a3=7,S11=143,
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=2${\;}^{{a}_{n}}$+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列满足:${a_1}=1,\frac{1}{{{a_{n+1}}}}=\frac{2}{a_n}+1,({n∈{N^*}})$,若${b_{n+1}}=({n-λ})({\frac{1}{a_n}+1})$,b1=-λ,且数列{bn}是单调递增数列,则实数λ的取值范围为λ<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.以下几个命题中真命题的序号为②③④.
①在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相关系数r的绝对值越接近于1,两个随机变量的线性相关性越强;
③用秦九昭算法求多项式f(x)=208+9x2+6x4+x6在x=-4时,v2的值为22;
④过抛物线y2=4x的焦点作直线与抛物线相交于A、B两点,则使它们的横坐标之和等于4的直线有且只有两条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\frac{{e}^{x}}{2}$-$\frac{a}{{e}^{x}}$,若对任意的x1,x2∈[1,2],且x1≠x2时,[|f(x1)|-|f(x2)|](x1-x2)>0,则实数a的取值范围为(  )
A.[-$\frac{{e}^{2}}{4}$,$\frac{{e}^{2}}{4}$]B.[-$\frac{{e}^{2}}{2}$,$\frac{{e}^{2}}{2}$]C.[-$\frac{{e}^{2}}{3}$,$\frac{{e}^{2}}{3}$]D.[-e2,e2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知ABCD是复平面内的平行四边形,并且A,B,C三点对应的复数分别是3+i,-2i,-1-i,求D点对应的复数;
(2)已知复数Z1=2,$\frac{{Z}_{2}}{{Z}_{1}}$=i,并且|z|=2$\sqrt{2}$,|z-z1|=|z-z2|,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}-2x+a+1,x>0}\end{array}\right.$,若函数g(x)=f(x)-ax-1有4个零点,则实数a的取值范围为(  )
A.(0,1)B.(0,2)C.(-1,2)D.(1+∞)

查看答案和解析>>

同步练习册答案