精英家教网 > 高中数学 > 题目详情
7.如图,过圆E外一点A作一条直线与半径为2的圆E交于B,C两点,且$AB=\frac{1}{3}AC$,作直线AF与圆E相切于点F,连接EF交BC于点D,∠EBC=30°. 
(1)求AF的长;
(2)求证:AD=3ED.

分析 (1)延长BE交圆E于点M,连接CM,利用切割线定理转化求解AF即可.
(2)过E作EH⊥BC于H,通过△EDH~△ADF,转化求解即可.

解答 解:(1)延长BE交圆E于点M,连接CM,则∠BCM=90°,
又BM=2BE=4,∠EBC=30°,所以$BC=2\sqrt{3}$,
又$AB=\frac{1}{3}AC$,可知$AB=\frac{1}{2}BC=\sqrt{3}$.
所以,$A{F^2}=AB•AC=\sqrt{3}•3\sqrt{3}=9$,即AF=3…(6分)
(2)证明:过E作EH⊥BC于H,则△EDH~△ADF,EH=2sin30°=1,
从而有$\frac{ED}{AD}=\frac{EH}{AF}=\frac{1}{3}$,因此AD=3ED…(10分)

点评 本题考查直线与圆的位置关系,切割线定理以及相似三角形的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设f-1(x)为f(x)=$\frac{π}{6}$sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的反函数,则y=f(x)+f-1(x)的值域为$[-\frac{7π}{12},\frac{7π}{12}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)在R上可导,其导函数为f′(x),如图是函数g(x)=xf′(x)的图象,则f(x)的极值点是(  )
A.极大值点x=-2,极小值点x=0B.极小值点x=-2,极大值点x=0
C.极值点只有x=-2D.极值点只有x=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$\frac{2}{m}$+$\frac{1}{n}$=1(m>0,n>0),则当mn取得最小值时,双曲线$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{{n}^{2}}$=1的渐近线方程为y=$±\frac{1}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=2x-ax2+bcosx在点$(\frac{π}{2},f(\frac{π}{2}))$处的切线方程为$y=\frac{3}{4}π$.
(1)求a,b的值及f(x)在[0,π]上的单调区间;
(2)若x1,x2∈[0,π],且x1≠x2,f(x1)=f(x2),求证$f'(\frac{{{x_1}+{x_2}}}{2})<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知${(3{x^2}-\frac{1}{x})^n}$的展开式中所有二项式系数和为64,则n=6;二项展开式中含x3的系数为-540.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)={log_{\frac{1}{2}}}\frac{x^2}{x-1}$的最大值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.正整数1260与924的最大公约数为84.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若三边长分别为3,5,a的三角形是锐角三角形,则a的取值范围为(4,$\sqrt{34}$).

查看答案和解析>>

同步练习册答案