精英家教网 > 高中数学 > 题目详情
19.函数$f(x)={log_{\frac{1}{2}}}\frac{x^2}{x-1}$的最大值是-2.

分析 求出函数的定义域,根据函数的单调性求出f(x)的最大值即可.

解答 解:令$\frac{{x}^{2}}{x-1}$>0,解得:x>1,
故f(x)的定义域是(1,+∞),
令g(x)=$\frac{{x}^{2}}{x-1}$,x∈(1,+∞),
g′(x)=$\frac{x(x-2)}{{(x-1)}^{2}}$,
令g′(x)>0,解得:x>2,
令g′(x)<0,解得:1<x<2,
故g(x)在(1,2)递减,在(2,+∞)递增,
故f(x)在(1,2)递增,在(2,+∞)递减,
故f(x)max=f(2)=-2,
故答案为:-2.

点评 本题考查了对数函数的性质,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的下焦点为F(0,-c),直线y=kx-c与圆x2+y2=a2相切于点M,与双曲线的上支交于点N,若∠MOF=∠MON(O是坐标原点),则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在二项式(2x3-$\frac{1}{\sqrt{x}}$)7的展开式中.常数顶等于(  )
A.-42B.42C.-14D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,过圆E外一点A作一条直线与半径为2的圆E交于B,C两点,且$AB=\frac{1}{3}AC$,作直线AF与圆E相切于点F,连接EF交BC于点D,∠EBC=30°. 
(1)求AF的长;
(2)求证:AD=3ED.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列关于程序框和功能描述正确的是(  )
A.(1)是处理框;(2)是判断框;(3)是终端框;(4)是输入、输出框
B.(1)是终端框;(2)是输入、输出框;(3)是处理框;(4)是判断框
C.(1)是处理框;(2)是输入、输出框;(3)是终端框;(4)是判断框
D.(1)是终端框;(2)是处理框;(3)是输入、输出框;(4)是判断框

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=log2(5-|x+1|-|x-2|)的定义域为D.
(1)求集合D;
(2)设a,b∈D,证明:$|{a+b}|<|{3+\frac{ab}{3}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.将曲线ρ2(1+sin2θ)=2化为直角坐标方程是(  )
A.x2+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{2}$+y2=1C.2x2+y2=1D.x2+2y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.[选做二]若2x+4y=8,则x+2y的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2$\frac{x-3}{x+2}$.
(1)求函数f(x)的定义域;
(2)当x为何值时,等式f(x)+log2(x-4)=1成立?

查看答案和解析>>

同步练习册答案