精英家教网 > 高中数学 > 题目详情
6.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的下焦点为F(0,-c),直线y=kx-c与圆x2+y2=a2相切于点M,与双曲线的上支交于点N,若∠MOF=∠MON(O是坐标原点),则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{1+\sqrt{3}}{2}$

分析 设双曲线的上焦点为F',连接NF',可得NF'与OM平行,即有NF⊥NF',由中位线定理可得|NF'|=2a,运用双曲线的定义,再由勾股定理和离心率公式,即可得到所求.

解答 解:设双曲线的上焦点为F',连接NF',
由直线y=kx-c与圆x2+y2=a2相切于点M,
由OM⊥NF,且∠MOF=∠MON,
可得M为NF'的中点,由中位线定理可得NF⊥NF',
且|NF|'=2|OM|=2a,
由双曲线的定义可得|NF|=2a+2a=4a,
在直角三角形NFF'中,可得
(2c)2=4a2+(2a+2a)2
即有4c2=20a2
由c2=5a2
即为c=$\sqrt{5}$a,
则e=$\frac{c}{a}$=$\sqrt{5}$.
故选:B.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和中位线定理,以及勾股定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布N(2000,1002),则在此期间的某一天,太阳岛的人数不超过2300的概率为(  )
附;若X~N(μ,σ2
$\begin{array}{l}P(μ-σ<x≤μ+σ)=0.6826\\ P(μ-2σ<x≤μ+2σ)=0.9544\\ P(μ-3σ<x≤μ+3σ)=0.9974\end{array}$.
A.0.4987B.0.8413C.0.9772D.0.9987

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知O、A、B三点不共线,P为该平面内一点,且$\overrightarrow{OP}=\overrightarrow{OA}+\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$,则(  )
A.点P在线段AB 上B.点P在线段AB的延长线上
C.点P在线段AB的反向延长线上D.点P在射线AB上

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f-1(x)为f(x)=$\frac{π}{6}$sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的反函数,则y=f(x)+f-1(x)的值域为$[-\frac{7π}{12},\frac{7π}{12}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,3),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2B.$\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.三棱锥A-BCD中,E是BC的中点,且BD=8,CD=6,BC=10,AB=AD=4$\sqrt{2}$.
(1)求证:AE⊥BD;
(2)若二面角A-BD-C的余弦值为$\frac{3}{4}$,求AD与平面BCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表:
理科文科总计
131023
72027
总计203050
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.
根据表中数据,得到K2=$\frac{50×(13×20-10×7)2}{23×27×20×30}$≈4.844,则认为选修文理科与性别有关系出错的可能性约为5%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)在R上可导,其导函数为f′(x),如图是函数g(x)=xf′(x)的图象,则f(x)的极值点是(  )
A.极大值点x=-2,极小值点x=0B.极小值点x=-2,极大值点x=0
C.极值点只有x=-2D.极值点只有x=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$f(x)={log_{\frac{1}{2}}}\frac{x^2}{x-1}$的最大值是-2.

查看答案和解析>>

同步练习册答案