精英家教网 > 高中数学 > 题目详情
17.已知O、A、B三点不共线,P为该平面内一点,且$\overrightarrow{OP}=\overrightarrow{OA}+\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$,则(  )
A.点P在线段AB 上B.点P在线段AB的延长线上
C.点P在线段AB的反向延长线上D.点P在射线AB上

分析 由已知得即$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,即$\overrightarrow{AP}$是与$\overrightarrow{AB}$同向的单位向量,点P在射线AB上,

解答 解:∵$\overrightarrow{OP}=\overrightarrow{OA}+\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$,则$\overrightarrow{OP}-\overrightarrow{OA}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$,即$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$
∴$\overrightarrow{AP}$是与$\overrightarrow{AB}$同向的单位向量,∴点P在射线AB上,
故选:D.

点评 本题考查了平面向量的线性运算及向量数乘运算得意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如图茎叶图记录了甲、乙两组各5名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为14,乙组数据的平均数为16,则x+y的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.观察算式,21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…用你所发现的规律得出22010的末位数字是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图如图所示,则该几何体的侧面积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机变量ξ服从正态分布N(0,δ2),且P(ξ>2)=0.023,则P(ξ<-2)等于(  )
A.0.977B.0.023C.0.477D.0.628

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(A组题)已知直线Ax+By+C=0与⊙O:x2+y2=2交于P、Q两点,若满足A2+B2=2C2,则$\overrightarrow{OP}•\overrightarrow{OQ}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若(2x+1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a0-a1+a2-a3+a4-a5的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的下焦点为F(0,-c),直线y=kx-c与圆x2+y2=a2相切于点M,与双曲线的上支交于点N,若∠MOF=∠MON(O是坐标原点),则此双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{1+\sqrt{5}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在二项式(2x3-$\frac{1}{\sqrt{x}}$)7的展开式中.常数顶等于(  )
A.-42B.42C.-14D.14

查看答案和解析>>

同步练习册答案