精英家教网 > 高中数学 > 题目详情
如图,从椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且ABOP,|F1A|=
10
+
5

(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点C,D,且
OC
OD
?若存在,写出该圆的方程,并求|CD|的取值范围;若不存在,说明理由.
(1)由题意可求点P的坐标为(-c,
b2
a
)
,由ABOP得,
kOP=kAB⇒-
b2
ac
=-
b
a
⇒b=c,a=
2
c
|F1A|=a+c=(1+
2
)c=
10
+
5
⇒c=
5

a=
10
,b=
5

椭圆E的方程为
x2
10
+
y2
5
=1

(2)假设存符合题意的圆,切线与椭圆的交点为C(x1,y1),D(x2,y2),
当该圆的切线不垂直x轴时,设其方程为y=kx+m,
由方程组
y=kx+m
x2
10
+
y2
5
=1
,得x2+2(kx+m)2=10,即(1+2k2)x2+4kmx+2m2-10=0,
则△=16k2m2-4(1+2k2)(2m2-10)=8(10k2-m2+5)>0,即10k2-m2+5>0,
x1+x2=-
4km
1+2k2
x1x2=
2m2-10
1+2k2

y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=
k2(2m2-10)
1+2k2
-
4k2m2
1+2k2
+m2=
m2-10k2
1+2k2

要使
OC
OD
,需使x1x2+y1y2=0,即
2m2-10
1+2k2
+
m2-10k2
1+2k2
=0

∴3m2-10k2-10=0,∴k2=
3m2-10
10
≥0

又10k2-m2+5>0,∴
2m2>5
3m2≥10

m2
10
3
,即m≥
30
3
m≤-
30
3

∵直线y=kx+m为圆心在原点的圆的一条切线,
∴圆的半径为r=
|m|
1+k2
r2=
m2
1+k2
=
m2
1+
3m2-10
10
=
10
3

所求的圆为x2+y2=
10
3

此时圆的切线y=kx+m都满足m≥
30
3
m≤-
30
3

而当切线的斜率不存在时,切线为x=±
30
3
,与椭圆
x2
10
+
y2
5
=1
的两个交点为(
30
3
,±
30
3
)
(-
30
3
,±
30
3
)
,满足
OC
OD

综上所述,存在圆心在原点的圆x2+y2=
10
3
,使得该圆的任意一条切线与椭圆E恒有两个交点C,D,且
OC
OD

x1+x2=-
4km
1+2k2
x1x2=
2m2-10
1+2k2

(x1-x2)2=(x1+x2)2-4x1x2=(-
4km
1+2k2
)2-4×
2m2-10
1+2k2
=
8(10k2-m2+5)
(1+2k2)2

|CD|=
1+k2
|x1-x2|
=
1+k2
(x1+x2)2-4x1x2
=
40
3
4k4+5k2+1
4k4+4k2+1
=
40
3
(1+
k2
4k4+4k2+1
)

①当k≠0时,|CD|=
40
3
(1+
1
4k2+
1
k2
+4
)

4k2+
1
k2
+4≥8
,∴0<
1
4k2+
1
k2
+4
1
8

40
3
40
3
[1+
1
4k2+
1
k2
+4
]≤15

2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知不过坐标原点O的直线L与抛物线y2=2x相交于A、B两点,且OA⊥OB,OE⊥AB于E.
①求证:直线L过定点;
②求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
1
2
,一条准线方程为x=4.
(1)求椭圆E的标准方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=2px(p为常数)的准线与X轴交于点K,过K的直线l与抛物线交于A、B两点,则
OA
OB
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆过定点A(-3,0)且和定圆(x-3)2+y2=4外切,则动圆圆心P的轨迹为(  )
A.双曲线B.椭圆C.抛物线D.双曲线一支

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2
5
,且过点(-3,2),⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线y=-x+m与曲线y=
5-
1
4
x2
只有一个公共点,则m的取值范围是(  )
A.-1≤m<2B.-2
5
≤m≤2
5
C.-2≤m<2或m=5D.-2
5
≤m≤2
5
或m=5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆
x2
4
+y2=1
共焦点,它们的离心率之和为
3
3
2

(1)求椭圆与双曲线的离心率e1、e2
(2)求双曲线的标准方程与渐近线方程;
(3)已知直线l:y=
1
2
x+m
与椭圆有两个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,圆O与离心率为
3
2
的椭圆T:
x2
a2
+
y2
b2
=1
(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
①若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求
d21
+
d22
的最大值;
②若3
MA
MC
=4
MB
MD
,求l1与l2的方程.

查看答案和解析>>

同步练习册答案