精英家教网 > 高中数学 > 题目详情
17.△ABC,角A,B,C所对的边分别为a,b,c,且1+cos(π+2A)=2sin2$\frac{B+C}{2}$
(1)求角A的大小;
(2)当a=6时,求△ABC面积的最大值并判断此时△ABC的形状.

分析 (1)已知等式左边利用诱导公式及二倍角的余弦函数公式化简,右边利用诱导公式及二倍角的余弦函数公式化简,整理求出cosA的值,即可确定出A的度数;
(2)利用余弦定理列出关系式,把a与cosA的值代入,并利用基本不等式求出bc的最大值,进而求出三角形面积的最大值,以及此时三角形的形状.

解答 解:(1)已知等式1+cos(π+2A)=2sin2$\frac{B+C}{2}$,整理得:1-cos2A=2-2cos2A=2cos2$\frac{A}{2}$=1+cosA,
即2cos2A+cosA-1=0,
解得:cosA=$\frac{1}{2}$或cosA=-1(舍去),
则A=$\frac{π}{3}$;
(2)∵a=6,cosA=$\frac{1}{2}$,
∴由余弦定理得:a2=b2+c2-2bccosA,即36=b2+c2-bc≥2bc-bc=bc,
∴S△ABC=$\frac{1}{2}$bcsinA≤9$\sqrt{3}$,当且仅当b=c时取等号,
则△ABC面积的最大值为9$\sqrt{3}$,此时△ABC的形状为等边三角形.

点评 此题考查了正弦、余弦定理,三角形面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,$\overrightarrow{c}$=k$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{d}$=$\overrightarrow{a}$-$\overrightarrow{b}$.
(1)若$\overrightarrow{c}$∥$\overrightarrow{d}$,求k的值,并判断$\overrightarrow{c}$、$\overrightarrow{d}$是否同向;
(2)若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,当k为何值时,$\overrightarrow{c}$⊥$\overrightarrow{d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求定积分:∫${\;}_{0}^{2}$f(x)dx,其中f(x)=$\left\{\begin{array}{l}{x+1,x≤1}\\{\frac{1}{2}{x}^{2},x>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(2x-1)=x2+1,则f(x)的解析式为(  )
A.f(x)=$\frac{{x}^{2}+2x+5}{4}$B.f(x)=$\frac{{x}^{2}-2x+5}{4}$C.f(x)=$\frac{{x}^{2}+2x+3}{2}$D.f(x)=$\frac{{x}^{2}-2x+3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=($\sqrt{3}$sinx,-1),$\overrightarrow{n}$=(cosx,cos2x),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$
(1)若x∈[0,$\frac{π}{4}$],f(x)=$\frac{\sqrt{3}}{3}$,求cos2x的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2bcosA≤2c-$\sqrt{3}$a,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+x2-2ax+a2,a∈R.
(1)若a=0,求函数f(x)在[$\frac{1}{2}$,1]上的最大值;
(2)若函数f(x)在[$\frac{1}{3}$,2]上存在单调递增区间,求a的取值范围;
(3)当a>$\sqrt{2}$时,求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2$\sqrt{3}$sin(2ωx+φ),(ω>0,φ∈(0,π))的图象中相邻两条对称轴间的距离为$\frac{π}{2}$,且点(-$\frac{π}{4}$,0)是它的一个对称中心.
(1)求f(x)的表达式,并求出f(x)的单调递增区间.
(2)若f(ax)(a>0)在(0,$\frac{π}{3}$)上是单调递减函数,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设地球半径为R,则北纬45°圈上两点A,B的经度分别是西经120°和东经150°,A,B两点的球面距离为$\frac{πR}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.有两项调查:①某社区有300个家庭,其中高收入家庭105户,中等收入家庭180户,低收入家庭15户,为了了解社会购买力的某项指标,要从中抽出一个容量为100户的样本;②在某地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况.这两项调查宜采用的抽样方法是(  )
A.调查①采用系统抽样法,调查②采用分层抽样法
B.调查①采用分层抽样法,调查②采用系统抽样法
C.调查①采用分层抽样法,调查②采用抽签法
D.调查①采用抽签法,调查②采用系统抽样法

查看答案和解析>>

同步练习册答案