分析 由已知可得${a}_{2i-1}=[2(2i-1)+m]+(-1)^{2i-1}[3(2i-1)-2]$,再由等差数列的前n项和可得$\sum_{i=1}^{2m}$a2i-1=m(4-2m)≤2,结合$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1可得k2-2k-1≥2,求解不等式得答案.
解答 解:由题意,${a}_{2i-1}=[2(2i-1)+m]+(-1)^{2i-1}[3(2i-1)-2]$=-2i+(m+3),
故$\sum_{i=1}^{2m}$a2i-1=$\sum_{i=1}^{2m}$[-2i+(m+3)]=$\frac{2m[(m+1)-4m+(m+3)]}{2}=m(4-2m)$.
当m∈N*时,$\sum_{i=1}^{2m}$a2i-1=m(4-2m)≤2.
又$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1对任意m∈N*恒成立,
∴k2-2k-1≥2,解得k≥3或k≤-1.
故正实数k的取值范围为[3,+∞).
故答案为:[3,+∞).
点评 本题考查数列求和,考查数学转化思想方法,训练了一元二次不等式的解法,是中档题.
科目:高中数学 来源: 题型:填空题
| x | 1 | 2 | 3 | 4 |
| f(x) | 2 | 3 | 4 | 1 |
| f′(x) | 3 | 4 | 2 | 1 |
| g(x) | 3 | 1 | 4 | 2 |
| g′(x) | 2 | 4 | 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,+∞) | B. | [-1,+∞) | C. | [-1,1] | D. | [-2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -10 | C. | 4 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com