精英家教网 > 高中数学 > 题目详情
3.已知数列{an}满足an=(2n+m)+(-1)n(3n-2)(m∈N*,m与n无关),若$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1对任意的m∈N*恒成立,则正实数k的取值范围为[3,+∞).

分析 由已知可得${a}_{2i-1}=[2(2i-1)+m]+(-1)^{2i-1}[3(2i-1)-2]$,再由等差数列的前n项和可得$\sum_{i=1}^{2m}$a2i-1=m(4-2m)≤2,结合$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1可得k2-2k-1≥2,求解不等式得答案.

解答 解:由题意,${a}_{2i-1}=[2(2i-1)+m]+(-1)^{2i-1}[3(2i-1)-2]$=-2i+(m+3),
故$\sum_{i=1}^{2m}$a2i-1=$\sum_{i=1}^{2m}$[-2i+(m+3)]=$\frac{2m[(m+1)-4m+(m+3)]}{2}=m(4-2m)$.
当m∈N*时,$\sum_{i=1}^{2m}$a2i-1=m(4-2m)≤2.
又$\sum_{i=1}^{2m}$a2i-1≤k2-2k-1对任意m∈N*恒成立,
∴k2-2k-1≥2,解得k≥3或k≤-1.
故正实数k的取值范围为[3,+∞).
故答案为:[3,+∞).

点评 本题考查数列求和,考查数学转化思想方法,训练了一元二次不等式的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.若集合A={1,2,3,4},B={x|x2-x-6≤0},则A∩B=(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设函数f(x),g(x)在区间(0,5)内导数存在,且有以下数据:
x1234
f(x)2341
f′(x)3421
g(x)3142
g′(x)2413
则曲线f(x)在点(1,f(1))处的切线方程是y=3x-1;函数f(g(x))在x=2处的导数值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={y|y=x2+2x-1,x∈R},B={x|x2-1≤0},则A∩B=(  )
A.[-2,+∞)B.[-1,+∞)C.[-1,1]D.[-2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知O是坐标原点,点P(2,1),若M(x,y)满足约束条件$\left\{\begin{array}{l}{x-3≤0}\\{y-a≤0}\\{x+y≥0}\end{array}\right.$,且$\overrightarrow{OP}•\overrightarrow{OM}$的最大值为10,则实数a的值是(  )
A.-3B.-10C.4D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)将曲线C的参数方程化为普通方程,将直线l的极坐标方程化为直角坐标方程;
(Ⅱ)设点P在曲线C上,求点P到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.化简z=$\frac{1+i}{1-i}$的结果是(  )
A.3B.1C.2+iD.i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.己知向量|$\overrightarrow{AB}$|=2,|$\overrightarrow{CD}$|=1,且|$\overrightarrow{AB}$-2$\overrightarrow{CD}$|=2$\sqrt{3}$丨,则向量$\overrightarrow{AB}$和$\overrightarrow{CD}$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}sinα-cosα}\\{y=3-2\sqrt{3}sinαcosα-2co{s}^{2}α}\end{array}\right.$ (α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.曲线C2的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)若曲线C1与曲线C2有公共点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案