精英家教网 > 高中数学 > 题目详情
已知函数处取得极值,且
(1) 求函数的解析式;   (2) 若在区间上单调递增,求的取值范围
(1)。(2)得
本试题主要是考查了导数在研究函数中的运用,利用函数在给定点处取得极值,则得到参数的值,进而得到函数解析式。同时根据函数在区间上单调递增,说明导函数在该区间恒大于等于零,那么可知范围的值。
解:函数的导函数为,函数在处取得极值,得
,又因为,得,解得,所以
(2)函数的导函数,易判断函数的单调增区间为,在区间上单调递增,
。得
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;
(Ⅱ)当时,试比较与1的大小;
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
定义:对函数,对给定的正整数,若在其定义域内存在实数,使得,则称函数为“性质函数”。
(1)判断函数是否为“性质函数”?说明理由;
(2)若函数为“2性质函数”,求实数的取值范围;
(3)已知函数的图像有公共点,求证:为“1性质函数”。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题共12分)
已知函数,其中
(Ⅰ)讨论的单调性;
(Ⅱ)求函数在〔〕上的最小值和最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,设函数
,且函数的零点均在区间内,则的最小值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

是定义在上的非负可导函数,且满足,对任意正数mn,则的大小关系是______(请用,或=)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知
(1)若,试判断函数在定义域内的单调性;
(2)若上恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是函数的导函数,的图象如图1所示,则  的图象最有可能是下图中的(   )


A               B               C                D

查看答案和解析>>

同步练习册答案