精英家教网 > 高中数学 > 题目详情
已知F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,点E在以AB为直径的圆内,则该双曲线的离心率e的取值范围为(  )
A、(1,+∞)
B、(1,2)
C、(1,1+
2
D、(2,+∞)
考点:直线与圆锥曲线的关系,双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:由右顶点在以AB为直径的圆的内部,得|EF|<|AF|,将其转化为关于a、b、c的式子,再结合平方关系和离心率的公式,化简整理得e2-e-2>0,解之即可得到此双曲线的离心率e的取值范围.
解答: 解:由题意,直线AB方程为:x=-c,其中c=
a2+b2

因此,设A(-c,y0),B(-c,-y0),
c2
a2
-
y02
b2
=1,解之y0=
b2
a
,得|AF|=
b2
a

∵双曲线的右顶点在以AB为直径的圆内部
∴|EF|<|AF|,即a+c<
b2
a

将b2=c2-a2,并化简整理,得2a2+ac-c2<0
两边都除以a2,整理得e2-e-2>0,解之得e>2(舍负)
故选:D.
点评:本题给出以双曲线通径为直径的圆,当右顶点在此圆内时求双曲线的离心率,着重考查了双曲线的标准方程和简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x),g(x)的定义域和值域都是R,命题P:?x∈R,f(x)<g(x),则命题P的否定是(  )
A、?x0∈R,使f(x0)<g(x0
B、存在无数多个实数x,使得f(x)<g(x)
C、?x∈R,都有f(x)+
1
2
<g(x)
D、存在实数x,使得f(x)≥g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个各项均为正数的等比数列,其任何一项都等于它后面两项之和,则其公比是(  )
A、
-1-
5
2
B、
-1+
5
2
C、
1+
5
2
D、
-1-
5
2
-1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-cosx,设a=f(-0.5),b=f(0),c=f(3),则(  )
A、a<b<c
B、c<a<b
C、c<b<a
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

极坐标系中,过点(2,
π
3
)且与极轴垂直的直线方程为(  )
A、ρsinθ=-
3
B、ρ=-
3
sinθ
C、ρ=-4cosθ
D、ρcosθ-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i为虚数单位,复数
2
1-i
的共轭复数是(  )
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|
2x-1
x+1
>0},N={x|-3x2+x+2>0},则M∩N=(  )
A、(-∞,-1)∪(1,+∞)
B、(
1
2
,1)
C、(1,+∞)
D、(-∞,-1)∪(-
2
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

现有5名同学去听同时进行的6个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是(  )
A、54
B、65
C、
5×6×5×4×3×2
2
D、6×5×4×3×2

查看答案和解析>>

科目:高中数学 来源: 题型:

盒中装有6个零件,其中2个是使用过的,另外4个未经使用,
(1)从盒中随机一次抽取3个零件,求抽取到的3个零件中恰有1个是使用过的概率;
(2)从盒中每次随机抽取1个零件,观察后都将零件放回盒中,记3次抽取中抽到使用过的零件的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案