精英家教网 > 高中数学 > 题目详情
已知集合M={x|
2x-1
x+1
>0},N={x|-3x2+x+2>0},则M∩N=(  )
A、(-∞,-1)∪(1,+∞)
B、(
1
2
,1)
C、(1,+∞)
D、(-∞,-1)∪(-
2
3
,+∞)
考点:交集及其运算,其他不等式的解法
专题:集合
分析:根据不等式的性质,求出集合M,N,利用集合的基本运算即可到达结论.
解答: 解:M={x|
2x-1
x+1
>0}={x|(x+1)(2x-1)>0}={x|x>
1
2
或x<-1},
N={x|-3x2+x+2>0}={x|3x2-x-2<0}={x|-
2
3
<x<1
},
则M∩N={x|-
1
2
<x<1
},
故选:B.
点评:本题主要考查集合的基本运算,利用不等式的性质,求出集合M,N是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)和圆x2+y2=(c+
b
2
)2
(其中c为椭圆半焦距)有四个不同的交点,则椭圆离心率的范围是(  )
A、(
5
5
3
5
B、(
2
5
5
5
C、(
2
5
3
5
D、(0,
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,f(-x)=f(x)且f(x)=f(x+2),当0≤x≤1时,f(x)=x2,若方程f(x)=x+a有两个不等实根,那么实数a的值为(  )
A、2k或2k-
1
4
(k∈z)
B、k或k-
1
4
(k∈z)
C、2k(k∈z)
D、k(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,点E在以AB为直径的圆内,则该双曲线的离心率e的取值范围为(  )
A、(1,+∞)
B、(1,2)
C、(1,1+
2
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为(  )
A、(A
 
2
5
2
B、(C
 
2
5
2
C、(C
 
2
5
2•A
 
2
4
D、(C
 
2
5
2•A
 
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1,若在[-1,1]上存在x使得f(x)>0,则实数p的取值范围是(  )
A、[-
3
2
,-
1
2
]∪[1,3]
B、[1,3]
C、[-
1
2
,3]
D、(-3,
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用”辗转相除法”求得98与63的最大公约数是(  )
A、17B、14C、9D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

将A,B,C,D,E五种不同的文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屈至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的概率是(  )
A、
2
21
B、
4
21
C、
8
21
D、
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…log3an,若cn=-
1
bn
,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案