精英家教网 > 高中数学 > 题目详情
盒中装有6个零件,其中2个是使用过的,另外4个未经使用,
(1)从盒中随机一次抽取3个零件,求抽取到的3个零件中恰有1个是使用过的概率;
(2)从盒中每次随机抽取1个零件,观察后都将零件放回盒中,记3次抽取中抽到使用过的零件的次数为X,求X的分布列和数学期望.
考点:离散型随机变量的期望与方差,古典概型及其概率计算公式
专题:计算题,概率与统计
分析:(1)利用古典概型的概率公式,可求抽取到的3个零件中恰有1个是使用过的概率;
(2)确定随机变量X的所有取值,求出相应的概率,可得随机变量X的分布列和数学期望.
解答: 解:(1)记事件A为“抽取到3个零件中恰有一个是使用过的”,则 P(A)=
C
1
2
C
2
4
C
3
6
=
3
5

(2)依题有X~B(3,
1
3
),则
P(X=0)=(
2
3
)3=
8
27
,P(X=1)=
C
1
3
1
3
•(
2
3
)2=
4
9

P(X=2)=
C
2
3
•(
1
3
)2
2
3
=
2
9
,P(X=3)=(
1
3
)3=
1
27

所以X的分布列如下
X 0 1 2 3
P
8
27
4
9
2
9
1
27
所以X的期望是EX=3×
1
3
=1
点评:本题考查概率的计算,考查离散型随机变量的分布列与数学期望,解题的关键是确定变量的取值,求出相应的概率.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,点E在以AB为直径的圆内,则该双曲线的离心率e的取值范围为(  )
A、(1,+∞)
B、(1,2)
C、(1,1+
2
D、(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

将A,B,C,D,E五种不同的文件随机地放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屈至多放一种文件,则文件A,B被放在相邻的抽屉内且文件C,D被放在不相邻的抽屉内的概率是(  )
A、
2
21
B、
4
21
C、
8
21
D、
1
7

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.7x,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.
(1)若年销售量增加的比例为0.4x,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内?
(2)在(1)的条件下,当x为何值时,本年度的年利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=Asin(ωx+φ)在一个周期内的图象如图,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是直角梯形,AD∥BC,AB⊥BC,平面PAB⊥底面ABCD,PA=AD=AB=1,BC=2.
(Ⅰ)证明:平面PBC⊥平面PDC;
(Ⅱ)若∠PAB=120°,求三棱锥P-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式;
(2)设bn=log3a1+log3a2+…log3an,若cn=-
1
bn
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,我国某搜救舰艇以30(海里/小时)的速度在南海某区域搜索,在点A处测得基地P在南偏东60°,向北航行40分钟后到达点B,测得基地P在南偏东30°,并发现在北偏东60°的航向上有疑似马航飘浮物,搜救舰艇立即转向直线前往,再航行80分钟到达飘浮物C处,求此时P、C间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集为U=R,集合A=(-∞,-3]∪[6,+∞),B={x|-2<x<8}.
(1)求如图阴影部分表示的集合;
(2)已知非空集合C={x|x>2a且x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案