精英家教网 > 高中数学 > 题目详情
14.已知集合A={x|1≤x≤3},$B=\left\{{\left.{x\left|\right.\sqrt{x-1}≥1}\right\}}\right.$.
(1)求A∩B;
(2)若A∩B是集合{x|x≥a}的子集,求实数a的取值范围.

分析 (1)求出B中x的范围确定出B,找出A与B的交集即可;
(2)由交集为已知集合的子集,确定出a的范围即可.

解答 解:(1)∵B={x|$\sqrt{x-1}$≥1}={x|x≥2},A={x|1≤x≤3},
∴A∩B={x|2≤x≤3};
(2)由(1)得:A∩B={x|2≤x≤3},
∴集合{x|2≤x≤3}是集合{x|x≥a}的子集,
∴a≤2.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.若直线l过点A(-1,1),B(2,-1),则l的斜率为(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系xOy中,已知动圆M过点F(1,0)且与直线x=-1相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设P为曲线C上一点,曲线C在点P处的切线交y轴于点A,若△PAF外接圆面积为4π,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x对年销售额(单位:万元)的影响,对近6年的年宣传费xi和年销售额yi(i=1,2,…6)数据进行了研究,发现宣传费xi和年销售额yi具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.
$\overline{x}$ $\overline{y}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$ $\sum_{i=1}^{6}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ 
6500  201300 
(Ⅰ)根据表中数据,建立y关于x的回归方程;
(Ⅱ)利用)(Ⅰ)中的回归方程预测该公司如果对该产品的宣传费支出为10万元时销售额时n万元,该公司计划从10名中层管理人员中挑选出3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为ξ,且随机变量η=$\frac{n}{40}$+ξ,求η的概率分布列与数学期望.
附:回归直线的倾斜率截距的最小二乘估计公式分别为:
$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i-1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=x+\frac{a^2}{x}$,g(x)=x+lnx,其中a>0.
(Ⅰ)当a=2时,求函数f(x)的单调递减区间;
(Ⅱ)若对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆的标准方程为$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1,F1,F2为椭圆的左右焦点,P是椭圆在第一象限的点,则|PF1|-|PF2|的取值范围是(  )
A.(0,6)B.(1,6)C.(0,$\sqrt{5}$)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ax-1,g(x)=lnx,a∈R,设F(x)=f(x)-g(x).
(1)求曲线y=g(x)在x=1处的切线方程;
(2)求函数F(x)的单调区间;
(3)当a>0时,若函数F(x)没有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线2x-y+1=0与直线x+ay+2=0平行,则实数a的值为(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,60°的二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,则CD的长为(  )
A.$\sqrt{17}$B.7C.2$\sqrt{17}$D.9

查看答案和解析>>

同步练习册答案