精英家教网 > 高中数学 > 题目详情
19.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点 A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是(  )
①三棱锥P-AA1Q的体积为定值;
②当CQ=$\frac{1}{2}$时,S为等腰梯形;
③当$\frac{3}{4}$<CQ<1时,S为六边形; 
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$.
A.①④B.①②③C.②③④D.①②④

分析 ①通过计算点P到平面AA1Q的距离,利用体积公式计算即可;
②通过条件可得PQ∥AD1,从而得出结论;
③当$\frac{3}{4}<CQ<1$时,S为五边形,故③错误;
④通过条件可知S为平行四边形APC1R,利用面积计算公式即得结论.

解答 解:①点P到平面AA1Q的距离$h=\frac{{\sqrt{2}}}{4}$,
∴${V_{P-A{A_1}Q}}=\frac{1}{3}•{S_{△A{A_1}Q}}•h=\frac{1}{3}×\frac{1}{2}×1×\sqrt{2}×\frac{{\sqrt{2}}}{4}=\frac{1}{12}$,故①正确.
②当$CQ=\frac{1}{2}$时,PQ∥AD1,S为等腰梯形APQD1,故②正确.
③当$\frac{3}{4}<CQ<1$时,S为五边形,故③错误.
④设A1D1的中点为R,当CQ=1时,S为平行四边形APC1R,
易得S的面积为$\frac{{\sqrt{6}}}{2}$,故④正确.
故选:D.

点评 本题考查点到直线的距离公式,棱锥的体积公式,面积公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图所示的数阵中,每行、每列的三个数均成等比数列,如果数阵中所有数的乘积等于$\frac{1}{512}$,那么a22=(  )
$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array})$.
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在四棱锥S-ABCD中,SA⊥面ABCD,ABCD为正方形,过A且垂直于SC的平面交SB、SC、SD于E、F、G,求证:AE⊥SB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若正四棱锥的底面边长为$2\sqrt{3}cm$,体积为4cm3,则它的侧面积为8$\sqrt{3}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.对于实数a,b,定义运算“?”:a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,设f(x)=(x2-2)?(2-x2),x∈R.若函数y=f(x)-m的图象与x轴有四个公共点,则实数m的取值范围是(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx的图象过点(-4n,0),且f′(0)=2n,n∈N*
(Ⅰ)求f(x)的解析式;
(Ⅱ)若数列{an}满足$\frac{1}{{{a_{n+1}}}}={f^'}(\frac{1}{a_n})$,且a1=4,求数列{an}的通项公式;
(Ⅲ)记bn=$\sqrt{{a_n}{a_{n+1}}}$,数列{bn}的前n项和Tn,求证:$\frac{4}{3}≤{T_n}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论
(1)AC1⊥BC;   
(2)$\frac{AD}{D{C}_{1}}$=1;
(3)面FAC1⊥面ACC1A1
(4)三棱锥D-ACF的体积为$\frac{\sqrt{3}}{3}$.
其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.为了保证信息安全,传输必须加密,有一种加密、解密方式,其原理如下:明文$\stackrel{加密}{→}$密文$\stackrel{发送}{→}$密文$\stackrel{解密}{→}$明文,已知加密函数为y=xα-1(x为明文,y为密文),如果明文“3”通过加密后得到密文为“26”,再发送,接受方通过加密得到明文“3”,若接受方接到密文为“7”,则原发的明文是(  )
A.7B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+lnx(a∈R)
(1)当a=-$\frac{1}{4}$时,求函数在区间[1,e]上的最值;
(2)若函数f1(x)和f2(x)在公共定义域D内总有f1(x)<f2(x)恒成立,则称f2(x)为f1(x)在D上的“上界函数”,若函数g(x)=$\frac{1}{2}$x2+2ax为f(x)在(1,+∞)上的“上界函数”,求a的范围.

查看答案和解析>>

同步练习册答案