精英家教网 > 高中数学 > 题目详情
10.函数y=x4-2x2+5的单调减区间为(  )
A.(-∞,-1)及(0,1)B.(-1,0)及(1,+∞)C.(-1,1)D.(-∞,-1)及(1,+∞)

分析 先求出函数的导数,通过讨论x的范围,从而求出函数的递减区间.

解答 解:y′=4x3-4x=4x(x+1)(x-1),
x∈(-∞,-1)时,y′<0,x∈(-1,0)时,y′>0,
x∈(0,1)时,y′<0,x∈(1,+∞)时,y′>0,
∴函数的递减区间是(-∞,-1),(0,1),
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若圆柱OO′的底面半径与高均为1,则其表面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1)当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,1≤x+ay≤5恒成立,则实数a的取值范围是[0,$\frac{8}{3}$].
(2)设P,Q分别为圆x2+(y-6)2=2和椭圆$\frac{{x}^{2}}{10}$+y2=1上的点,则P,Q两点间的最大距离是6$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在[1,+∞)上的函数f(x)=$\left\{\begin{array}{l}4-8|{x-\frac{3}{2}}|,1≤x≤2\\ \frac{1}{2}f(\frac{x}{2}),x>2\end{array}$,给出下列结论:
(1)函数f(x)的值域为[0,4];
(2)关于x的方程$f(x)={(\frac{1}{2})^n}$(n∈N*)有2n+4个不相等的实数根;
(3)当x∈[2n-1,2n](n∈N*)时,函数f(x)的图象与x轴围成的图形面积为2;
(4)存在x0∈[1,8],使得不等式x0f(x0)>6成立,
其中正确的结论个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.A,B,C为空间三点,经过这三点(  )
A.能确定一个平面或不能确定平面B.可以确定一个平面
C.能确定无数个平面D.能确定一个或无数个平面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若存在实数x,使x2-4bx+3b<0成立,则b的取值范围是(-∞,0)∪($\frac{3}{4}$.+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第1846个图案中需用黑色瓷砖7392块.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某旅馆有三人间、两人间、单人间三种房间(每种房间仅能入住相应人数)各一间可用,有4个成年男性带2个小男孩来投宿,小孩不宜单住一间(必须有成人陪同).若三间房都住有人,则不同的安排住宿方法有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式 f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.

查看答案和解析>>

同步练习册答案