精英家教网 > 高中数学 > 题目详情
6.若圆x2+(y-1)2=3截直线y=kx-1所得的弦长为2,则斜率k的值是(  )
A.$±\sqrt{2}$B.$±\sqrt{3}$C.±1D.±2

分析 由题意求出圆心坐标和半径,由点到直线的距离公式求出圆心到直线y=kx-1的距离d,根据弦长公式列出方程求出k的值.

解答 解:由题意得,圆心坐标是(0,1),半径r=$\sqrt{3}$,
∵圆x2+(y-1)2=3截直线y=kx-1所得的弦长为2,
∴圆心到直线y=kx-1的距离d=$\frac{2}{\sqrt{{k}^{2}+1}}$=$\sqrt{3-1}$,
解得k=±1,
故选C.

点评 本题考查直线与圆相交时弦长问题,以及点到直线的距离公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某企业2015年的纯利润为500万元,因为企业的设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2015年开始,此后每年比上一年纯利润减少20万元.如果进行技术改造,2016年初该企业需一次性投入资金600万元,在未扣除技术改造资金的情况下,预计2016年的利润为750万元,此后每年的利润比前一年利润的一半还多250万元.
(1)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的年纯利润为an万元;进行技术改造后,在未扣除技术改造资金的情况下的年利润为bn万元,求an和bn
(2)设从2016年起的第n年(以2016年为第一年),该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元,求An和Bn
(3)依上述预测,从2016年起该企业至少经过多少年,进行技术改造的累计纯利润将超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中点.
(Ⅰ)求证:AM∥平面SCD;
(Ⅱ)求证:平面SDC⊥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{OM}=(3,-2),\overrightarrow{ON}=(-5,-1),则\overrightarrow{MN}等于$(  )
A.(8,-1)B.(-8,1)C.(-2,-3)D.(-15,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.命题“存在x0∈R,log2x0<0”的否定是(  )
A.对任意的x∈R,log2x<0B.对任意的x∈R,log2x≥0
C.不存在x∈R,log2x≥0D.存在x0∈R,log2x0≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)等差数列{an}的各项均为正数,a1=3,前n项和为Sn,S10=120,求an
(2)已知函数f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1,-$\frac{π}{6}$≤x≤$\frac{π}{3}$,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在正四面体ABCD中,E,F分别为棱AD,BC的中点,连接AF,CE,则异面直线AF与CE所成角的余弦值为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:
 交强险浮动因素和浮动费率比率表
  浮动因素浮动比率 
 A1 上一个年度未发生有责任道路交通事故 下浮10%
 A2 上两个年度未发生有责任道路交通事故 下浮20%
 A3 上三个及以上年度未发生有责任道路交通事故 下浮30%
 A4 上一个年度发生一次有责任不涉及死亡的道路交通事故 0%
 A5 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%
 A6 上一个年度发生有责任道路交通死亡事故 上浮30%
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
 类型 A1 A2 A3 A4 A5 A6
 数量10 20 15 
(Ⅰ)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有六辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选两辆车,求这两辆车中恰好有一辆为事故车的概率;
②若该销售商一次购进120辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中的真命题为(  )
A.?x0∈Z,使得1<4x0<3B.?x0∈Z,使得5x0+1=0
C.?x∈R,x2-1=0D.?x∈R,x2+x+2>0

查看答案和解析>>

同步练习册答案