精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3
+a2x2+ax+b(a>0),当x=-1时函数f(x)的极值为
2
3
,则f(2)=______.
由f(x)=
1
3
x3
+a2x2+ax+b(a>0),得f(x)=x2+2a2x+a.
因为当x=-1时函数f(x)的极值为
2
3

所以
f(-1)=1-2a2+a=0  ①
f(-1)=-
1
3
+a2-a+b=
2
3
,解①得:a=-
1
2
(舍),或a=1.
把a=1代入②得:b=1.
所以f(x)=
1
3
x3+x2+x+1

所以f(2)=
1
3
×23+22+2+1=
29
3

故答案为
29
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案