精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,运用三段论证明BD⊥平面PAC.
考点:进行简单的演绎推理
专题:推理和证明
分析:运用三段论先证明PO⊥BD,AC⊥BD;再证明BD⊥平面PAC.
解答: 证明:大前提:如果一条直线与一个平面垂直,那么这条直线垂直于平面内的任意一条直线,
小前提:PO⊥平面ABCD,BD?平面ABCD,
结论:PO⊥BD;
大前提:正方形的对角线互相垂直,
小前提:AC、BD是正方形ABCD的对角线,
结论:AC⊥BD;
大前提:如果一条直线垂直于平面内的两条相交直线,那么这条直线与该平面垂直,
小前提:PO⊥BD,AC⊥BD,PO∩AC=O,且PO?平面PAC,AC?平面PAC,
结论:BD⊥平面PAC.
点评:本题通过空间中的线面垂直的证明,考查了演绎推理的三段论的应用问题,也考查了逻辑思维能力,是一道比较好的考查基础知识的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是AB的中点
(Ⅰ)求二面角D-B1E-C的平面角的余弦值.
(Ⅱ)在B1C上是否存在点P,使PB∥平面B1ED,若存在,求出点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:0.5lg7•7lg2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列
1
1×2
1
2×3
1
3×4
,…,
1
n(n+1)
,…Sn为其前n项和.
(1)计算S1,S2,S3,由此推测计算Sn的公式.
(2)用数学归纳法证明你所得的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示算法语句,将输出的A值依次分别记为a1,a2,…,an,…,a2014
(1)求数列{an}的通项公式;
(2)令bn=
22n-1
anan+1
,若数列{bn}的前n项和Sn,证明:对于任意的n∈N*,Sn
1
3
(n∈N*,n≤2014)

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4,5这六个数字组成无重复数字的五位数.试分别求出符合下列条件的五位数的个数(最后结果用数字表达):
(1)总的个数;    
(2)奇数;     
(3)能被6整除的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足:Sn=a(Sn-an+1)(正常数a≠1),cn=
1
an+1
-
1
an+1-1

(1)求{an}的通项公式;
(2)设bn=an2+Sn•an,若数列{bn}为等比数列,求a的值;
(3)在满足条件(2)的情形下,cn=
1
an+1
-
1
an+1-1
,数列{cn}的前n项和为Tn,求证:Tn>2n-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90,点D是棱B1C1的中点.
(1)求证AB1∥平面A1DC;
(2)求AC与平面A1DC所成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式ax2+bx-1<0的解集为{x|-1<x<2},则a、b分别为
 

查看答案和解析>>

同步练习册答案